
THE CERN PS/SL CONTROLS JAVA APPLICATION PROGRAMMING
INTERFACE

F. Di Maio, P. Charrue, J. Cuperus, I. Deloose, K. Kostro, M. Vanden Eynden, CERN, Geneva,
Switzerland

W. Watson, TJNAF, Newport News, USA

Abstract

The PS/SL Convergence Project was launched in
March 1998. Its objective is to deliver a common controls
infrastructure for the CERN accelerators by year 2001. In
the framework of this convergence activity, a project was
launched to develop a Java Application Programming
Interface (API) between programs written in the Java
language and the PS and SL accelerator equipment. This
Java API was specified and developed in collaboration
with TJNAF. It is based on the Java CDEV [1] package
that has been extended in order to end up with a
CERN/TJNAF common product.

It implements a detailed model composed of devices
organised in named classes that provide a property-based
 interface. It supports data subscription and introspection
facilities.

The device model is presented and the capabilities of
the API are described with syntax examples. The software
architecture is also described.

1 THE JAVA API PROJECT
The purpose of the Java API project is to develop a

Java package or packages that will provide an interface
between controls applications written in the Java
language and the CERN accelerators operated by the PS
or SL divisions. One aspect of this work is to develop a
language-independent object-oriented model of the
accelerator devices. By moving to this new language in
collaboration, the PS and SL controls groups expect to
eliminate duplication of effort and also to produce a
better product in the process [2].

This project is a collaboration between CERN and
TJNAF, W.Watson being a member of this project since
its foundation. At the end of the specification phase, the
decision was made to base the implementation on a Java
version of the CDEV library provided by TJNAF [3]. The
Java API in use at CERN is now based on a new version
of the Java CDEV library provided by TJNAF and the
two laboratories maintain a collaboration on this product.

2 THE DEVICE/PROPERTY MODEL
The Java API depends on a device-oriented view of the

control system. In this view the system consists of named
devices. A device may represent a physical device in the
control system (such as a magnet or a beam position

monitor), but it may also represent an abstraction of a
control entity (e.g. a ring with associated tune and orbit
measurements). Conceptually, devices have device
properties, which constitute the state of the device. By
getting the value of a device property the device state can
be read. Accordingly, a device can be controlled by
setting one of its properties with the required value. For
instance a magnet may have a "current" property. The
getting or setting of this property respectively delivers the
actual value of the magnet current or brings the current to
the required level. Although devised independently, this
model is very similar to the Java beans model with its
get/set attribute accessors.

Devices are organised in device classes that describe
the device interface namely the available properties and
their type. Devices of the same class have the same set of
properties. Device classes constitute the meta-description
of devices. An example is given in Fig. 1.

Properties may have characteristics such as units,
resolution, etc. A property's characteristic is either a
single value, common to all members of the same device
class, or a reference to another property, which holds the
value. Characteristics may be used to describe the
purpose of a property or to indicate relations between
properties.

Figure 1: Sample Properties for a Magnet device

3 THE CAPABILITIES
Here the essential capabilities of the Java API are

described. It should be kept in mind that some of these
capabilities such as subscription or time stamping rely on
the underlying control system capabilities.

3.1 I/O Methods

The I/O methods of the device objects implement the
following capabilities:

- get or set a property (get, set),
- activate or stop the monitoring of a property

(monitorOn, monitorOff),

Magnet

status: int
command: int
current: double
currentAcq: double

International Conference on Accelerator and Large Experimental Physics Control Systems

578

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

- execute a named operation accepting input
parameters and returning results (send)

- get or set the reference value of a property
(getReference, setReference).

The CDEV’s Data and DataEntry objects are used to
exchange data. A Data object is a container for one or
many DataEntry objects that encapsulate data and
implement conversion methods from the internal data
representation to any supported data type (numeric
values, strings and arrays). DataEntry objects also have a
tag (String) so that a Data object can be composed of
many DataEntry objects with different tags.

When an error is detected in the interface library or is
reported by the underlying control system, a DeviceError
object is returned. A DeviceError object encapsulates a
message, a category and a numeric code. It is also a
java.lang.Exception object that can be thrown.

3.2 Synchronous and Asynchronous Methods

Synchronous methods block the user thread until the
I/O is completed. They take Data objects as parameters
and returns DeviceError objet on failure. The following
code fragment is an example of a synchronous get
invocation.

Device dev = new Device(“BTP.DVT10”);
Data = new Data();
DeviceError err;
err = dev.get(“CurrentAcq”, data);
if (err != null) throw err; // simplest usage
double acqCurrent = data.getDoubleValue();

Asynchronous methods do not block the user thread
and a separate thread will execute a user-specified
method when the I/O is completed. Asynchronous
methods are based on the Java event model and are
essential to exploit the power of Java. They require a
class implementing the DeviceListener interface as a
parameter. The DeviceListener interface defines a
deviceChanged method, which allows receiving
DeviceEvent objects. A DeviceEvent object provides the
information about the completion of an I/O operation
including the Data or DeviceError, the Device and all the
I/O parameters.

The following code fragment illustrates the
implementation of a class to receive a magnet’s current.

class MagCurrentHandler implements DeviceListener {
void deviceChanged (DeviceEvent event) {
 String devName = event.getDevice.getName();
 double acq_current =
 event.getValue().getDoubleValue();
 …

3.3 Timing System Support

Many parts of the CERN accelerators are controlled by
a timing system, which sends events on a dedicated

network as well as information about the process, like the
cycle description for a cyclical accelerator.

As a result, a device is usually linked to a timing
system. Consequently, I/O operations may require some
timing system specific parameters such as a cycle type or
an event identifier. It must also be possible to have the
execution of an I/O operation synchronised with a timing
systems event.

For this purpose, a Device object can be associated
with a DeviceContext object that can be used to specify
such parameters. The following code fragment illustrates
how to specify a timing-event as well as a cycle-type that
will control the monitoring of a device.

DeviceContext ctxt = new DeviceContext();
ctxt.setCycleType(“CPS.PARTY.PROTON”);
ctxt.setTimingEvent (“END_CYCLE”);
dev.setContext(ctxt);

3.4 Acquisitions

In addition to values, acquisitions can include a time-
stamp, a Java double (64 bits float) giving the acquisition
time in seconds since the usual Posix origin, and a cycle-
stamp, a Java long integer (64 bits) used to identify every
executed machine cycle.

All these data are enclosed in the same Data object. In
addition to the DataEntry object(s) returning the value,
there can be DataEntry objects tagged “timeStamp” and
“cycleStamp”.

3.5 Device and Device Class Discovery

In most cases the application program knows which
properties are supported by a device class, what is the
native type of the property, etc. But there is a class of
programs like generic displays and browsers, which need
device class information to construct their I/O requests.
This information is made available through the directory
service, which also fulfils the role of naming service and
device querying engine.

Information about devices includes their parameters,
the timing system they belong to and their relation to
other devices. Information about the device classes
includes properties and their attributes and characteristics.
This information is provided by means of dedicated
classes, such as DeviceData, DeviceClass and
DeviceProperty which are described in [4].

4 THE SOFTWARE ARCHITECTURE

4.1 The core CDEV part

Many CDEV concepts map directly the CERN
requirements: the device concept, asynchronous I/O,
connectivity to different control systems and support for
publish/subscribe. As a result, the project team decided to
use the CDEV’s Java development for the CERN Java
API implementation.

579

A new version of the CDEV’s Java implementation
was designed and has been provided by TJNAF. It offers
a better connectivity to local control systems, an extended
support for property based I/O and it allows extension
with a directory service. The public interface has also
been reviewed in order, for instance, to introduce event
listeners and error objects that have been mentioned
above.

The software architecture is illustrated in Fig.2. The
core CDEV part includes the interfaces that define the
capabilities, which are implemented by the directory
service and by the I/O services.

Figure 2: Software Architecture

4.2 The directory service

The directory service, described in detail in [4] is an
addition to the original CDEV implementation, which
adds all capabilities that rely on configuration data, such
as the discovery of devices and device classes. A
directory service is used at CERN but it is still possible to
use CDEV without such a service.

The CERN I/O services also use the directory service
to set up their device calls. This includes getting the
network parameters of the devices and checking whether
the properties are implemented for the device and what
their attributes are.

4.3 The I/O services

An I/O service implements the connection with the
underlying control system. There can be many variants
and two distinct devices may be served by two distinct
I/O services.

There are two possible architectures for implementing
an I/O service. In a 2-tier architecture, the Java process
has a direct connection to the front-end server tasks. In a
3-tier architecture, the Java process connects to a middle
tier server that communicates with local equipment
servers.

The 2-tier architecture is simpler to implement and is
the more efficient one for synchronous I/O (blocking
calls). The first CERN implementations of the API are
based on this architecture: a JNI connection to C/C++
libraries is used for communicating with the PS
accelerator devices while a Java RPC package (SUN
protocol) is used for the SL accelerator devices. The first
solution is not “pure Java” (native libraries are required)

but did not require new server tasks in the front-end
computers. It is also worth mentioning that JNI
connections to C libraries that are not thread-safe impose
the usage of semaphores that reduce parallelism.

The 3-tier architecture shall also be used in the future.
This comes from two major constraints: a) it became clear
that the Java code running in the client’s virtual machine
must be reduced in order to cope with performance
limitation on some platforms, b) the equipment server
tasks are running on real-time systems where resources
are limited. The current CDEV Java distribution includes
an I/O service that can communicate with EPICS and all
other CDEV C++ supported systems in a 3-tier
architecture. At CERN, a dedicated PS/SL convergence
sub-project is working on a new middleware architecture.
For now, prototypes have been made using home-made
protocols, RMI or CORBA.

5 CONCLUSIONS
The primary goal of the Java API project was to deliver

a common API for PS and SL controls as a major
component of a common architecture. The results of this
project are 1) a common model, 2) a common API based
on CDEV, 3) a common configuration management
facility. These products are a good base for a common
software architecture and will certainly evolve.

The collaboration with TJNAF is very valuable in this
process and up to now a strong collaboration is
maintained. CERN and TJNAF use the same CDEV
version. Each site had to introduce local extensions but by
continuous communications and regular merges, we
stayed on the same track.

Some Java applications that use this API have already
been delivered to operators. In the process of producing
Java application, we have now two aspects to cover. The
first one is to have an enhanced communication
infrastructure that will allow reducing the weight of the
client part. The second one is to provide programmers
with high-level components that will facilitate the
production of application software. There is hope for
sharing such components with TJNAF and other CDEV
users.

6 REFERENCES
[1] Jie Chen, Graham Heyes, Walt Akers, Danjin Wu and

William Watson III, "CDEV: An Object-Oriented
Class Library for Developing Device Control
Applications", Proceedings of ICALEPCS 95,
Chicago, U.S.A. October29-Nov. 3, 1995 , p 97.

[2] http://hpslweb.cern.ch/pssl/projects/javapi/javapi.html
CERN PS/SL Java API Project home page.

[3] http://www.jlab.org/cdev/ - CDEV home page
[4] J. Cuperus, P. Charrue, F. Di Maio, K. Kostro and W.

Watson, “A Directory Service for the CERN PS/SL
Java Programming Interface”, this Conference.

CDEV

Directory
Service

IO
Service

Equipment
Server

Configuration
Data

580

