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Abstract
We describe procedure for straightness correction of bal-

listic trajectories in the presence of unknown stray magneto-

static field and BPM offsets. We also discuss applicability

of this method to the beam based alignment of the European

XFEL undulators.

INTRODUCTION
In the framework of this paper, as a beam-based alignment

(BBA) method we understand any procedure which uses as

input beam trajectory measurements and allows to find off-

sets of the beam position monitors (BPMs) with respect

to some straight line of, in general, unknown orientation

in regard to the laboratory coordinate system. Such meth-

ods are important in many areas of accelerator applications,

and our particular interest is connected with the problem of

alignment of the European XFEL undulators.

BBA method, which tries to recover unknown BPM and

quadrupole offsets by fitting beam orbits measured for vari-

ous beam momenta to the known optical model of the beam-

line, has been established at the LCLS and later on was also

used at the European XFEL and at the PAL-XFEL facilities

[1–3]. The core of this method is an attempt to solve the

ill-conditioned inverse problem and, therefore, in order to

overcome its high sensitivity to the imperfections of the op-

tical model and measurement errors, and nevertheless have

reasonably accurate results, iterations and some regulariza-

tion procedure are typically required.

Other popular method discussed in the last decades is the

so-called dispersion free steering (DFS) algorithm, which

was invented to deal with the emittance dilution due to chro-

matic effects [4]. Using DFS methodology one tries to min-

imize the difference between orbits measured for different

beam energies but for the same transverse initial conditions

by using available actuators (steerers, quadrupole movers

and etc.). Unfortunately, even if the goal of the DFS al-

gorithm will be fulfilled and the difference orbits will be

corrected almost to zero, the straightness of the resulting

trajectories can’t be guaranteed. We mention DFS method

only because, as we will see later on, it is closely related to

the alignment approach suggested in this paper.

In the field free region the particle beam automatically

follows a straight line, which is the basis of the so-called

ballistic alignment method [5]. Unfortunately, at the Eu-

ropean XFEL, even if we will not only turn off all undula-

tor quadrupoles but also will degauss them, the uncontrol-

lable ambient magnetic field remains still enough large and

nonuniform to prevent direct usage of ballistic trajectories

for the straight line definition purposes [6].
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In this article we present a new BBA method, which is

based on the procedure of straightness correction of ballistic

trajectories, and briefly discuss applicability of this approach

to the alignment of the European XFEL undulators. Due

to space limitation, we consider only the most basic ques-

tions and the more detailed description of the algorithm and,

hopefully, practical alignment results will follow soon.

MOTION IN THE WEAK
MAGNETOSTATIC FIELD

We describe transverse particle motion in the magneto-

static field using a (straight) Cartesian coordinate system

with x, y and z being the horizontal, vertical and longitudi-
nal direction, respectively. We assume that the longitudinal

coordinate z can be introduced as an independent variable
and use a set of variables w = (x, qx, y, qy)� as transverse
particle coordinates. In this set qx and qy are transverse me-
chanical monenta scaled with the value p0, which is known
as reference kinetic momentum and is defined via relations

p0 = m0 c
√
γ2
0
− 1 = β0 E0 / c, (1)

where m0, E0, γ0, and β0 are the rest mass of the particle,
its energy, its Lorentz factor, and its velocity in terms of the

speed of light c, respectively.
In these variables, the equations describing the transverse

motion of a particle in a static magnetic field take on the

form

dx
dz
=

qx
qz
,

dqx
dz
=

e
p0

(
qy
qz

Bz − By

)
, (2a)

dy
dz
=

qy
qz
,

dqy
dz
=

e
p0

(
Bx −

qx
qz

Bz

)
, (2b)

where

qz =
√
1 − q2x − q2y, (3)

e is the particle charge, e/p0 is the inverse particle stiffness,
and B = (Bx,By,Bz)

� is the magnetic field.

Let us assume that all strong magnets in the beamline of

interest are turned off (and even deguassed, if possible) and

therefore the particle motion can be influenced only by un-

controlled stray magnetostatic fields and, possibly, by some

weakly excited corrector magnets, which were used to keep

the beam transmission with the main magnets switched off.

Then the x and y components of the solution of equations

(2) (i.e. ballistic trajectory) can be expressed in the form of

the asymptotic series in powers of a field smallness

x(z) = x(0) +
qx(0)
qz(0)

· z +
∞∑
k=1

(
e
p0

)k
· Xk [z, w(0)] , (4a)
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y(z) = y(0) +
qy(0)
qz(0)

· z +
∞∑
k=1

(
e
p0

)k
· Yk [z, w(0)] , (4b)

which are, in fact, expansions in powers of inverse particle

stiffness and that is of principal importance.

GENERALIZED DIFFERENCE ORBITS
FOR BALLISTIC TRAJECTORIES

Difference orbits are very useful tools in practical accel-

erator operations, especially in the presence of unknown

BPM and magnet offsets. For example, the actual beam

optics can be measured by using difference of two orbits

having the same beam energy but different transverse initial

conditions, and the beamline dispersion can be estimated by

utilizing differences of trajectories measured for different

beam energies but for the same transverse initial conditions.

The difference orbits, which we intend to introduce in this

section, will be defined using particle trajectories taken for

different beam energies but for the same transverse initial

conditions. Thus, let us choose n different beam energies

E0(1) > E0(2) > . . . > E0(n) (5)

with the reference momenta

p0(1) > p0(2) > . . . > p0(n) (6)

and let

[x1(z), y1(z)] , [x2(z), y2(z)] , . . . , [xn(z), yn(z)] (7)

be the corresponding x and y components of the solutions of
equations (2) taken for the same (energy independent) initial

conditions w(0).

Let us now consider the system of n linear equations

c1 + c2 + . . . + cn = 0, (8a)

c1
pk
0
(1)
+

c2
pk
0
(2)
+ . . . +

cn
pk
0
(n)
=

1

pk
0
(1)
, (8b)

k = 1, 2, . . . , n − 1

with respect to the n unknowns c1, c2, . . . , cn.
The matrix of the system (8) is the Vandermonde matrix.

It is non-degenerate due to condition (6), and therefore there

exists unique solution for the unknowns cm. For example,
for n = 2

c1 = −c2 = −
1

u2 − 1
, (9)

and for n = 3
c1 = −

u2 + u3 − 1
(u2 − 1) · (u3 − 1)

, (10a)

c2 =
u3

(u2 − 1) · (u3 − u2)
, (10b)

c3 = −
u2

(u3 − 1) · (u3 − u2)
, (10c)

where we have used the notation

um =
p0(1)
p0(m)

=

√√
γ2
0
(1) − 1

γ2
0
(m) − 1

. (11)

As generalized difference orbits for ballistic trajectories

we take the combinations x̃n(z) and ỹn(z) defined as follows

x̃n(z) = c1 x1(z) + c2 x2(z) + . . . + cn xn(z)

=

n−1∑
k=1

(
e

p0(1)

)k
· Xk [z, w(0)] + O

[(
e

p0(1)

)n]
, (12a)

ỹn(z) = c1 y1(z) + c2 y2(z) + . . . + cn yn(z)

=

n−1∑
k=1

(
e

p0(1)

)k
· Yk [z, w(0)] + O

[(
e

p0(1)

)n]
. (12b)

The usefulness of these generalized difference orbits is

connected with the facts that in x̃n(z) and ỹn(z) the energy
independent BPM offsets will be canceled during usage of

the real BPM measurements and that they reproduce first

n − 1 terms in the series expansions (4) taken for the highest

reference momentum p0(1).
Note that if the generalized difference orbits will be cal-

culated using BPM measurement data, then one will meet

the problem of the BPM noise amplification, i.e. in x̃n(z)
and ỹn(z) the rms BPM noise will be increased by a factor√

c2
1
+ c2

2
+ . . . + c2n, (13)

which grows rather quickly as n increases. This problem
can be partially solved in the usual fashion by assuming that

nonlinear terms in equations (2) are negligible and applying

averaging over many trajectory measurements.

POSSIBILITIES FOR NONITERATIVE
STRAIGHT LINE DEFINITION

Comparing (4) and (12) one sees that the differences

x1(z) − x̃n(z) = x(0) +
qx(0)
qz(0)

· z + O
[(

e
p0(1)

)n]
, (14a)

y1(z) − ỹn(z) = y(0) +
qy(0)
qz(0)

· z + O
[(

e
p0(1)

)n]
(14b)

are the straight lines with the precision up to the n-th degree
of the field smallness, and the accuracy of these formulas

can be increased in practice if the field smallness could be

reduced (in the integral sense) by proper setting of corrector

magnets based, for example, on the ambient field measure-

ments.

The main limiting factor for successful application of for-

mulas (14) to the real alignment is mainly not the discussed

above BPM noise amplification effect, but rather tight tol-

erances on the beam energy and BPM calibration, and on

the ability to keep energy independent transverse initial con-

ditions for the particle trajectories, which currently at the

European XFEL can’t be provided with the needed precision.
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ALGORITHM FOR ITERATIVE
STRAIGHTNESS REFINEMENT

In this section we describe briefly an iterative straightness

refinement procedure, which in the numerical simulations

provides good results even with rather large errors in the

beam energy and BPM calibration, and without ability to

keep energy independent transverse initial conditions for the

beam orbits.

Let us assume that the beamline under consideration con-

sist of m cells bounded by m+1 BPMs with the longitudinal
positions

z0 < z1 < . . . < zm, (15)

and let L be the maximal cell length.

For an arbitrary function ξ = ξ(z), the necessary and
sufficient conditions to coincide with some straight line at

the BPM locations can be written, for example, in the form

Fk(ξ) = 0, k = 1, . . . , m − 1, (16)

where

Fk(ξ) = L ·

[
ξ(zk+1) − ξ(zk)

zk+1 − zk
−
ξ(zk) − ξ(zk−1)

zk − zk−1

]
. (17)

So, in order to improve straightness of ballistic trajectories

and, in the same time, to avoid difficulties connected with

the unknown BPM offsets, we suggest to use generalized

difference orbits instead of ballistic trajectories themselves

and iteratively minimize the function

Ψ(x̃n, ỹn) =
m−1∑
k=1

[
F2
k (x̃n) + F2

k (ỹn)
]

(18)

by using available in the beamline corrector magnets.

Due to space limitation, let us mention briefly in some-

what arbitrary order few points important for the practical

realization of the suggested algorithm, and its detailed de-

scription will be published elsewhere.

Beam Transport without External Focusing
Without possibility to transport particles with external

focusing switched off, there is no big sense in all our con-

siderations. So, as a first step, we tested it at the European

XFEL and have shown that the particle beam can be reli-

ably transported through both its long undulators (SASE1-2)

without quadrupole focusing at the energies of 10,14, and
16 GeV.

Number of Different Energies
Extensive numerical simulations of the straightness refine-

ment procedure in the presence of ambient fields of different

amplitudes and spatial shapes indicate that usage of only two

different beam energies separated by about 4 GeV is already

sufficient in order to find lines of good straightness along

the European XFEL undulators.

Trajectory Launch Conditions
Even if there exists a possibility to keep energy indepen-

dent transverse initial conditions (for example, by upstream

BPMs placed in the field shielded region), trajectories cor-

responding to the different beam energies will, in general,

approach different straight lines during optimization process.

It is not very convenient and may lead, for example, to trans-

mission loss. So, it is better to minimize not the function

(18), but to add to this function the term

[
L ·

x̃n(z1) − x̃n(z0)
z1 − z0

]2
+

[
L ·

ỹn(z1) − ỹn(z0)
z1 − z0

]2
. (19)

One can show that with such addition our algorithm can

be viewed as an analog of the DFS procedure applied to

the generalized difference orbits, and that trajectories corre-

sponding to the different energies will approach each other

and therefore the same straight line during minimization.

It gives the following recipe how to deal with the launch

conditions in the absence of upstream BPMs in the field

shielded region. One fixes launch for the highest energy

orbit by some upstream BPMs and follows it on all iterations.

For any other trajectory, one searches at each iteration for

the new launch, which minimizes rms difference of this

orbit with the current highest energy orbit. Such procedure

somewhat increases the number of iterations required for

achieving good straightness, but works even in the absence of

the possibility to keep energy independent initial conditions

from the beginning.

Indirect Quality Indicator
As indirect quality indicator one can calculate at every

iteration straightness of the generalized difference orbits.

Algorithm Output
As an approximation to to the straight line one either

simply takes the highest energy trajectory or make use of

the differences (14), and in the numerical simulations both

approaches usually give compatible results.
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