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Abstract
Short electron bunches in a storage ring are subject to com-

plex longitudinal dynamics due to self-interaction with their
own CSR. Above a particular threshold current, this leads
to the formation of dynamically changing micro-structures
within the bunch, generally known as the micro-bunching in-
stability. The longitudinal dynamics of this phenomenon can
be simulated by solving the Vlasov-Fokker-Planck equation,
where the CSR self-interaction can be added as a pertur-
bation to the Hamiltonian. This contribution particularly
focuses on the comprehension of synchrotron motion in
the micro-bunching instability and how it relates to the for-
mation of the occurring micro-structures. Therefore, we
adopt the perspective of a single particle and comment on
its implications for collective motion. We explicitly show
how the shape of the parallel plates CSR wake potential
breaks homogeneity in longitudinal phase space and pro-
pose a quadrupole-like mode as potential seeding mecha-
nism of the micro-bunching instability. The gained insights
are verified using the passive particle tracking method of the
Vlasov-Fokker-Planck solver Inovesa.

INTRODUCTION
In order to increase the emission of coherent radiation,

modern synchrotron light sources are deliberately operat-
ing with short electron bunches. The KIT storage ring
KARA thus has a dedicated short-bunch mode providing
picosecond-long bunches that result in the emission of co-
herent synchrotron radiation (CSR) up to the THz frequency
range. Yet, due to self-interaction with its own radiation
field, the increased CSR strength also leads to complex lon-
gitudinal dynamics within the electron bunch. At low bunch
currents, the resulting potential well distortion mainly causes
a slight deformation of the still fairly stationary electron dis-
tribution. However, above a particular threshold current
Ith depending on the specific machine settings of the ac-
celerator, it leads to the formation of dynamically chang-
ing micro-structures within the bunch. As the longitudinal
charge distribution varies over time, this in turn results in ma-
jor fluctuations of the emitted CSR power and is thus called
micro-bunching or micro-wave instability. The underlying
longitudinal dynamics can be simulated to high qualitative
agreement by numerically solving the Vlasov-Fokker-Planck
equation (VFP) [1–4].

In this contribution, we explicitly focus on the understand-
ing of synchrotron motion below the instability threshold.
To that end, we first consider single particle motion in the ab-
∗ tobias.boltz@kit.edu
† now at DLR-VE, Oldenburg, Germany

sence of collective effects, where the system can be modeled
as a simple one-dimensional harmonic oscillator. By intro-
ducing CSR self-interaction (considering the wake potential
of the entire bunch) as a perturbation, the dynamics below
the threshold Ith can easily be illustrated in the single particle
picture. Furthermore, we show how the specific shape of
the CSR wake potential breaks homogeneity in longitudinal
phase space and propose a quadrupole-like mode to initially
drive the micro-bunching instability.

VFP EQUATION
The longitudinal dynamics of an electron bunch in a

storage ring are conveniently described in the phase space
spanned by the longitudinal position z and particle energy E .
By introducing the generalized coordinates q � (z− zs)/σz,0
and p � (E − Es)/σE ,0, the resulting phase space is dimen-
sionless and its origin marks the synchronous particle. Here,
zs and Es denote position and energy of the synchronous
particle, σz,0 the natural bunch length and σE ,0 the natu-
ral energy spread. The temporal evolution of the electron
distribution ψ(q, p, t) in the longitudinal phase space can be
described by the Vlasov-Fokker-Planck equation (following
the notation in [1])

∂ψ

∂θ
+
∂H

∂p
∂ψ

∂q
−
∂H

∂q
∂ψ

∂p
=

1
fs,0τd

∂

∂p

(
pψ +

∂ψ

∂p

)
, (1)

with the time given in multiples of nominal synchrotron pe-
riods θ = fs,0 t, the Hamiltonian H and the damping time τd.
The inhomogeneous part on the right hand side describes
the influence of radiation damping and diffusion. In the ab-
sence of collective effects and assuming linear accelerating
voltage VRF and linear momentum compaction factor αc, the
Hamiltonian is given as

H0(q, p, t) =
1
2

(
q2 + p2

)
. (2)

The unperturbed system is thus a one-dimensional harmonic
oscillator. Collective effects such as CSR self-interaction
can be included as a perturbation to the Hamiltonian

Hc(q, p, t) =
∫ ∞

q

Qc Vc(q′, t)dq′ , (3)

where Qc denotes the charge involved in the perturbation
and Vc(q, t) is the potential due to collective effects. In order
to calculate the CSR-induced wake potential, it is useful to
express the potential in terms of an impedance ZCSR(ω)

VCSR(q, t) =
∫ ∞

−∞

ρ̃(ω, t)ZCSR(ω)eiωqdω , (4)
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where ρ̃(ω) denotes the Fourier-transformed longitudinal
bunch profile. In general, the exact impedance of a storage
ring is not known. However, in the case of CSR-driven dy-
namics, the approximation of modeling the shielding effect
of the beam pipe by two parallel plates has proven to yield
quite reasonable results, e.g. [4]. The full Hamiltonian is
finally given by

H(q, p, t) = H0(q, p, t) +Hc(q, p, t) . (5)

SINGLE PARTICLE MOTION
Neglecting radiation damping and diffusion, we now con-

sider single particle motion.

One-dimensional Harmonic Oscillator
In the absence of collective effects, the Hamiltonian in

Eq. (5) takes the form of a simple one-dimensional harmonic
oscillator. Classically, such systems are defined by their
linear restoring force

F = −k x , (6)

which leads to the well known equation of motion

m Üx + k x = 0 , (7)

and their solution

x(t) = a0 cos(ωt + ϕ0) (8)
Ûx(t) = −a0 ω sin(ωt + ϕ0) , (9)

with ω =
√

k/m, the amplitude a0 and the initial phase ϕ0.
By choosing the generalized coordinates

q �
√

mωx and p �
√

m Ûx , (10)

the Hamiltonian is equal to Eq. (2) and motion in the corre-
sponding phase space is perfectly circular. This corresponds
to the longitudinal motion of electrons in the absence of
collective effects, where the RF potential acts as a linear
restoring force. By introducing a small perturbation

k ′ = k − ε with ε > 0 , (11)

the system remains a harmonic oscillator, but with the altered
solution

x ′(t) = a0 cos(ω′t + ϕ0) (12)
Ûx ′(t) = −a0 ω

′ sin(ω′t + ϕ0) , (13)

with ω′ =
√

k ′/m =
√
(k − ε)/m. Particle motion in the

phase space spanned by the original q and p is thus elliptical,
as illustrated in Fig. 1, and of altered periodicity.

Perturbation of the RF Potential
Given the parallel plates impedance ZCSR (see [5]), the

wake potential of a Gaussian bunch profile takes the form
depicted in the upper part of Fig. 2. While such a perfectly

k

k ′

-

q

p

Figure 1: A small perturbation of the restoring force leads
to an elliptical particle trajectory in the phase space spanned
by the generalized coordinates q and p.

Gaussian electron distribution exists in the zero current limit,
higher bunch current leads to an increased perturbation
strength and thus distortion of the Gaussian shape. Yet,
below the threshold current, the distribution still remains
fairly stationary ψ(q, p, t) ≈ ψ(q, p), which corresponds to
a stationary wake potential as shown in the lower part of
Fig. 2 for a range of different bunch currents. It should be
noted, the general shape of the wake potential is very similar
to that of a Gaussian shaped bunch up until right below the
threshold current of Ith = 260 µA, where the wake potential
is no longer stationary.
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Figure 2: CSR wake potential for a Gaussian bunch profile
(red and blue, top) and for I = (50,100,150,200,250) µA
below the instability threshold of Ith = 260 µA (bottom).
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Figure 3: Linear approximation (solid red line) of the effec-
tive potential below the threshold current Ith.

In order to investigate its effects on single particle motion,
we introduce the effective potential

Veff(q) = VRF(q) + VCSR(q) , (14)

combining the linear RF potential VRF(q) and the CSR wake
potential VCSR(q) (average over the ring). A single particle
moving in phase space is now subject to the effective poten-
tial Veff(q) over the interval [qmin,qmax], where qmin and qmax
denote the maximum deviations from the longitudinal posi-
tion of the synchronous particle. By approximating Veff(q)
as a linear function on the given interval

Veff(q) ≈ −k ′ q , q ∈ [qmin,qmax] , (15)

as illustrated in Fig. 3, single particle motion is still harmonic
below the threshold current, with the strength of the restor-
ing force k ′ being dependent on qmin and qmax. According to
equations (11-13), this results in a position-dependent ellip-
ticity of particle trajectories in phase space. This statement
can be verified using the passive particle tracking method of
Inovesa [6]. As illustrated in Fig. 4, the simulated particle
trajectories clearly show the expected position-dependent
elliptical shape. After an initial increase, the amplitude dif-
ference between the space and energy dimension qmax−pmax
decreases again, indicating a trend towards a more circular
shape for larger amplitudes.
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Figure 4: Shown is the amplitude difference of single particle
trajectories in phase space for n = 100 000 particles.
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Figure 5: Visualization of the effect of the position-
dependent elliptical trajectories in phase space on the charge
density. Shown are trajectories for particles with equidistant
average radius and an ellipticity comparable to Fig. 4 (effect
is magnified for better visibility).

Initial Quadrupole-like Mode
Considering an ensemble of particles, the altered trajecto-

ries lead to a concentration of particles at specific locations
in the longitudinal phase space, as is illustrated qualitatively
in Fig. 5. The CSR-induced perturbation of the RF potential
thus breaks the homogeneity in phase space and creates local
particle densities that form a quadrupole-like mode. This
inhomogeneity may initially seed the formation of micro-
structures and thereby kick off the micro-bunching instability.
Measurements of such a quadrupole-like deformation of the
charge distribution have also been reported in [7] for currents
above the instability threshold.

SUMMARY
The CSR self-interaction leads to a perturbation of the

single particle synchrotron motion within short electron
bunches in a storage ring. As derived above, the particle
trajectories take an approximately elliptical form in the lon-
gitudinal phase space and are dependent on the particle’s
deviation from the synchronous position. This leads to a
non-uniform concentration of particle trajectories in phase
space forming a quadrupole-like mode, which may act as
seeding mechanism for the micro-bunching instability.
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