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Abstract

A Robinson wiggler (RW) is considered to be installed in

= the Metrology Light Source (MLS) to lengthen the bunch
kS = and improve the Touschek lifetime by manipulating the
z £ damping partitions. Symplectic tracking is crucial to study
ﬁ the impact of the nonlinear field components introduced
f by the Robinson wiggler. This paper introduces a tracking
g method based on an implicit symplectic integrator to solve
£ the exact Hamiltonian equations of particle motion in the
2 wiggler. In addition, a numerical generating function method
= is implemented as an approach to realize fast tracking.
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INTRODUCTION

The Metrology Light Source (MLS) is an electron storage
ring operated at energies from 50 to 630 MeV for metrology
S applications in the THz to extreme UV spectral range [1].
,g The Robinson wiggler (RW), a transverse gradient wiggler

almlng to control the damping partitions, is considered to
g 2 be installed at the MLS due to the user’s high demands for

; longer beam lifetime. With the RW in a dispersive straight

'§ section, the longitudinal damping can be to transferred to

-5 the horizontal plane. As a consequence the bunch can be
2 lengthened and the transverse emittance can be reduced [2].

. Using the vertical white noise excitation to keep the trans-
~ verse beam size unchanged, there is potential to double the
& lifetime compared to the present value. However, the Robin-
< son wiggler introduces nonlinear distortions to the beam
2 dynamics, which should be studied carefully.

The analysis beam dynamics in the storage ring is based
> on Hamiltonian mechanics. A specific form for the Hamilto-
E nian in a general set of equations describes the motion for a
v particular dynamical system. Particle motion at any position
o in the storage ring can be obtained by solving [3]:
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where x; are the coordinates of the particle, p; are the com-
ponents of the momentum and H is the Hamiltonian.
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In tracking codes the dipoles and the multipoles are usu-
ally modeled with the impulse boundary approximation, in
which the magnetic field is assumed to be constant within
the effective boundary of the magnet and zero outside. In
this model, only the longitudinal component of the vector
potential is needed to describe the system. The coordinates
and their conjugate canonical momenta are not mixed in the
Hamiltonian, so the Hamiltonian could be split into drift-
kick combinations [4].

The magnetic field in a wiggler or undulator is three di-
mensional, in this case the splitting method fails. There is an
explicit symplectic integrator developed by Wu, Forest and
Robin [5], which requires the Hamiltonian to be expanded
in the paraxial approximation. However, the transverse mo-
menta p, and p, may reach large values inside the RW due
to the low operation energy of MLS, and the paraxial ap-
proximation is not longer appropriate. Consequently we
use a symplectic Runge-Kutta integrator to solve the exact
Hamiltonian equations.

Symplectic Runge-Kutta methods are implicit, and solv-
ing algebraic equations at each step inside the wiggler are
computationally expensive. Thus a numerical generating
function method is implemented to realize fast tracking for
nonlinear dynamics studies. The tracking results show that
the Robinson wiggler distorts the nonlinear beam dynamics,
but it will not be an obstacle to operate the MLS with the
RW.

ANALYTICAL REPRESENTATION OF
THE MAGNETIC FIELD IN THE
ROBINSON WIGGLER

The components of vector potential Ay, Ay, A, are needed
to build the Hamiltionian, therefore the analytical represen-
tation of the filed is necessary. The vector potential of a

wiggler can be derived from the Halbach expansions of the
field expressed in [3,5]:

Z Con sin(mkxx)sinh(ky,mny)sin(nkzz),
m,n

“)
M.N
Z Cncos(mkyx)cosh(ky mny)sin(nk;z), (5)

ymn

n

M'Z
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= cos(mkx)sinh(ky ymny)cos(nk;z),

m,n y mn
(6)
k3 un = M7k + 0k’ (7)

where k, is the period of the oscillation of the field along the
z axis, defined as the reference trajectory in the Cartesian
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coordinate system. And k, determines the transverse “roll
off” of the field with increased distance along x axis,while
Cynn determines the amplitude of the field.

Figure 1 depicts the vertical component of magnetic field

in the second period of the RW calculated from RADIA [6].

The B, values on the median plane are horizontally and
longitudinally asymmetric, which are more complicated than
expressed in Eq. (5). It is necessary to modify the Halbach
expansions by adding angular 6,,,,, and ¢,,,,, terms to describe
the magnetic field of the RW accurately. Then the B, is
expressed in:

M,N
Crncos(mkyx + 0,un)cosh(ky mny) ®

m,n

Xsin(nk;z + ¢mn),

accordingly Eq. (4) and Eq. (6) need to be corrected with
Omn and ¢, terms to satisfy Maxwell’s equations.
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Figure 1: By on the median plane (y = 0) in the second
period of the RW designed for the MLS.

The coefficients C,,;,, 0,1, and ¢y, can be obtained from
Fourier decomposition of the field component By. As shown
in Fig. 2, the residuals of analytical field respresentation
with M = 20 and N = 40 are less than 1%o for y =10 mm,
even below 0.1%o on the median plane, which fulfill the
requirements for the beam dynamics studis.

SYMPLECTIC INTEGRTAOR

The Runge-Kutta method can be used to integrate the
Hamiltonian equations of motion; however, the integration
will only be symplectic for specific Butcher tableaux [7].
Applying the implicit-midpoint integrator, a second order
Runge-Kutta method, Egs. (2)—(3) can be rewritten as [3]:

0H
x(s, + As) = x(s,) + As— , )
OPx |y=x® po=p)
o0H
px(sn + AS) px(sn) As— > (10)
O0x |, ) pe=pl)
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Figure 2: Differences between analytical representation of
magnetic field and numerical field map in the second period
of the RW.

in which the intermediate values x ) and p ) can be solved
from the following:
1, 0H
V= x(sp) + = A5~ , (11)
ODx | 4= X0 pe=p®
OH
Pin = Px(sn) = Asa_ SN( )
X ) pe=pl)

with the Newton-Raphson method [8].

The implicit mid-point integrator is applied to track the
particles through the second period of the Robinson wig-
gler. Figure 3 illustrates that the trajectory from sympletic
integration is benchmarked by non-symplectic Runge-Kutta
method through the numerical field map, which indicates
the analytical representation of the field and the symplectic
integrator are reliable.
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Figure 3: Particle trajectories in the Robinson wiggler from
symplectic and non-symplectic integrators.

NUMERICAL GENERATING FUNCTION
METHOD

The stepwise implicit integration is very time-consuming,
and it is not practical to realize multi-turn particle tracking.

MOPGW021
121 @

=0 Content from this work may be used under the terms of the CC BY 3.0 licence (© 2019). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI



10th Int. Particle Accelerator Conf.
= ISBN: 978-3-95450-208-0
[a)
E Therefore, a numerical generating function (GF) is intro-
g duced to realize fast symplectic tracking. The generating
4 function is built with the initial particle momenta p.;, py;
and the final position variables xf, yr, as described in the
following [9-11]:.

M
F(qxi, Qyi,pr,ny) = Z aklaniiQ;imefP;f,
k+l+m+n=1
(13)
oF oF OF (14)
p ;= ’p P= N = N i .
¥ 0qxi 7 aQyi s apr D 6pyf
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The effects of the RW on the electron motion are sampled
= by tracking a bunch of electrons through the field map at
= fixed energy. The coeflicients ayjm, in Eq. (13) are fitted
2 from the initial and final momenta and positions. When the
.g generating function F is built, pxr, pyr, gxf, gyr can be
S obtained successively by solving the nonlinear equations in
é Eq. (14). In this paper a 9""-order GF with 714 coefficients
£ is used to model the whole Robinson wiggler. Multi-particle
E tracking and fitting the coefficients are also computationally
2 expensive, however, these only need to be done once per
~ field map. Moreover, the multi-particle tracking doesn’t
£ have to be symplectic due to the intrinsic symplecticity of
£ the generating function.
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Figure 4: Discrepancy of the horizontal and vertical exit
momenta between GF method and Runge-Kutta integration
after passing through the whole wiggler at different initial co-
ordinates. The initial y is set to be 2 mm and initial momenta

Dx» Py are 0.

It can be seen from Fig. 4 that the discrepancies of the GF
tracking at different initial positions can reach the error level
2 of Ap%*" < 3 x 107° for a 2.3 m long field map compared
_qg to the Runge-Kutta integration method. Although the GF
£ can describe the Robinson wiggler accurately, the accuracy
B highly depends on the sampled particles. In principle, the
3 Dxi» Pyi » Xf, Yr should cover a large parameter space.
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NONLINEAR DYNAMICS STUDIES

The nonlinear dynamics simulations are realized with
» the ELEGANT code [12]. Although there is no module in
elegant which can represent the Robinson wiggler directly,
its SCRIPT element provides an interface to use customized
«= integrator for an elaborate device like the RW and make use
‘q"é of the powerful analysis tools in ELEGANT. The frequency
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map analysis of the Robinson wiggler on the nonlinear beam
dynamics is shown in Fig. 5. As a comparison, the dynamic
aperture (DA) in standard user mode at the MLS is larger
than the transverse size of the octagonal vacuumm chamber
with 42 mm in hight and 70 mm in width [2]. With the RW
turned on, the DA is shrinks significantly, but it is sufficient
for the operation.
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Figure 5: On-momentum dynamic aperture of the MLS
storage ring with the RW

SUMMARY

The analytical representation of magnetic field in the RW
has been established based on Halbach expansions, which
can achieve 1072 relative field accuracy. Based on this, the
exact Hamiltonian can be built and equations of particle
motion can solved by a second-order symplectic Runge-
Kutta integrator. The integration needs to solve the non-
linear equations implicitly step by step, therefore it is very
time-consuming and not practical in multi-turn tracking. As
an alternative approach, the GF method shows the advan-
tages of speed and symplecticity. However, the coefficients
of GF must be fitted carefully and the accuracy should be
benchmarked with other symplectic integrators. The non-
linear dynamics study is performed with the ELEGANT
code, which allows to call an external code using the GF
method for the RW. The tracking results show that the RW
has nonnegligible impact on the dynamic aperture, however
the dynamic aperture is sufficient for operating the RW at
the MLS.
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