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Abstract

We discuss numerical simulations of the Vlasov-Fokker-
Planck equation to model passive higher-harmonic cavity
(HHC) effects with parameters of the Advanced Light
Source Upgrade (ALS-U). The numerical results, obtained
with the SPACE code, are compared with a modal analysis
of the coupled-bunch instability theory.

INTRODUCTION

The option to reutilize the existing Advanced Light
Source (ALS) normal conducting higher-harmonic cavities
(HHCs) for the ALS Upgrade (ALS-U) is discussed in [1].
Optimal and stable conditions for bunch lengthening are
met with one cavity and Ry = 1.35 M(), however the
power loss P = 12.6 kW exceeds the cavity limit
(~5 kW). Reusing two of the ALS 3rd-harmonic cavities,
whose shunt impedance is Ry = 1.7 M{), the power loss
per cavity is P = 5.1 kW, within the cavity limit. However,
the two ALS HHC system is shown to be unstable, with the
longitudinal coupled-bunch mode u = 1 exhibiting a fast
growth [1]. Besides considering a newly designed HHC
system, in [1] it is suggested that the addition of the third
ALS HHC in bunch-shortening mode might be a solution
to stabilize the HHC system.

Table 1: ALS-U v20r Lattice Parameters
Symbol Value  Unit

Ring circumference C 196.5 m
Revolution frequency wy/2m 1.526 MHz
Beam energy E, 2 GeV
Average current Iy 500 mA
Momentum compaction a 2.11

Natural energy spread Os 0.943

Energy loss per turn Uy 0217  MeV
Synchronous phase (no HHCs) ¢, 158.784  deg
Harmonic number h 328

Main rf cavity frequency w1/2m 500.417 MHz
3"-harmonic frequency w3/2m  1501.251 MHz
Main cavity voltage Vi 0.6 MV
Natural rms bunch length Oz0 3.54 mm
Synchrotron tune (no HHCs) Uso 1.75

Synchrotron freq. (no HHCs) wso/21 2.68 kHz
Long. radiation damping T, 14 ms
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Table 2: HHC Design Options and Settings

Optimal HHC
Symbol Value Unit
HHC shunt impedance Ry 1.35 MQ
HHC quality factor Qy 20000
HHC tuning angle P 1.419/81.3  rad/deg
HHC resonance frequency — wg/2m 1501.496 MHz
HHC tuning Awg/2m 245 kHz
HHC power loss P 12.6 kW
Rms bunch length 0y 14.24 mm
Two ALS HHCs
Symbol Value Unit
HHC shunt impedance* Ry 3.4 MQ
HHC quality factor Qxu 21000
HHC tuning angle P 1.510/86.5 rad/deg
HHC resonance frequency  wg/2m 1501.835 MHz
HHC detuning frequency  Awg/2m 584 kHz
HHC power loss* P 5.1 kW
Rms bunch length 0, 14.7 mm
* Total

Table 3: Main Cavity Parameters

Symbol Value Unit
Main shunt impedance Ry 5 MQ
Main quality factor Qy 40000 MHz
Beta coupling Be 3

is calculated by linearizing the Vlasov equation about the
exact numerical solution of the unperturbed particle mo-
tion at equilibrium, leading to a dispersion-relation equa-
tion, Eq. (22) of [1], which is then solved numerically.

[2]. Assuming the centroid z,, (here z,, should be unders-
tood as (z,,)) of M = h bunches performing small rigid di-
pole oscillations, and making for the time evolution of the
coupled-bunch mode Z,

the following ansatz

COMPLEX FREQUENCY SHIFT
In [1] the growth-rate of the coupled-bunch mode . = 1

In this paper we follow the mode analysis presented in
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& the complex frequency shift Q for the coupled-bunch mode
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where f, = (pM + 1)w,. In Eq. (4) w is the incoherent
synchrotron frequency modified by the beam loading volt-
age V,, induced by stationary symmetric bunches

3eaipRyw, s cos Py sinyy
EoTo '

2
Ws = Wgo —

)

Vp(2) = iyRy cos Py cos(Bw,pz/c + Py), (6)

i, = 2I,A(wg). (7

n attribution to the author(s), title of the work, publis

1

8 Eq. (4) can be solved for w, and w; in the two limit cases
‘5 a) w; K w, and b) w, K w;, corresponding to an instabi-
- lity with growh rate much smaller and bigger than the fre-
£ quency shift respectively. It follows that the coherent com-
« plex frequency shift has the following two set of solutions
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NUMERICAL SIMULATIONS OF THE
VLASOV-FOKKER-PLANCK EQUATION

Numerical simulations of the Vlasov-Fokker-Planck
system of equation are performed with the SPACE code
[2]. For a numerical study of the performance and stability
of the NSLS-II passive 3HC system see [3].

The numerical results with parameters of the optimal
— HHC settings shown in Table 2 confirm the overall stability
2 of the HHC system. However, as already mentioned in the
2 Introduction, the power loss of the HHC exceeds the cavity
& limit of 5 kW.
= In the following discussion we present numerical simu-
S lations of the two ALS-U HHC system with parameters
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2 shown in Table 2, corresponding to a HHC detuning fre-
‘é quency Awg/2m = 584 kHz, giving, under stable condit-
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Figure 1: numerical simulations of the two ALS-U HHCs
with HHC detuning frequency Awpg/2m = 584 kHz; a)
shows the longitudinal bunch distribution densities after
2000 turns, displaying the unstable coupled-bunch mode
u =1; (b) and (c) show the time evolution of the bunch
centroid and bunch length respectively, for 5 different
bunches across the bunch train; (d) shows the bunch cen-
troid and bunch length of all bunch after 2000 turns, clearly
displaying the unstable coupled-bunch mode pu = 1. The
time evolution of the modulus of the coupled-bunch
mode y = 1 normalized to the natural bunch length g, is
shown in (e-g), in logarithmic scale. In Fig. 1(g) a linear fit
to the numerical result gives the growth time 7,,, =
0.139 ms, in good agreement with the analytical result
Tan = 0.131 ms given by Eq. (9).

ions, a bunch lenghtening factor of ~4. The numerical re-
sults are discussed in Fig. 1. Figure 1(a) shows the longitu-
dinal bunch distribution densities after 2000 turns, display-
ing an instability driven by coupled-bunch mode pu = 1.
Figures 1(b) and (c) show the time evolution of the bunch
centroid and bunch length respectively, for 5 different
bunches across the bunch train. Figure 1(d) shows the
bunch centroid and bunch length of all bunch after
2000 turns, clearly displaying the unstable coupled-bunch
modepu=1.
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Figure 2: Numerical simulation with HHC detuning fre-
quency of 2000 kHz. (a) shows the longitudinal bunch dis-
tribution densities after 30000 turns, displaying the onset
of the instability driven by the coupled-bunch mode 4 = 1;
(b) and (c) show the time evolution of the bunch centroid
and bunch length respectively, for 5 different bunches
across the bunch train; (d) shows the bunch centroid and
bunch length of all bunch after 30000 turns. The time evo-
lution of the coupled-bunch mode y = @ormalized to the
natural bunch length o,, is shown in (e), while (f) and (g)
show the time evolution of the unstable coupled-bunch
mode ¢ = 1. In (g) an exponential fit to the numerical re-
sult to extract the numerical growth time gives
Toum = 2.3 ms, in good agreement with the analytical
result 7,, = 2.4 ms given by Eq. (8).
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The time evolution of the modulus of the coupled-bunch
mode y = 1 normalized to the natural bunch length g, is
shown in Fig. 1(e-g) in logarithmic scale. In Fig. 1(g) a lin-
ear fit to the numerical result gives the growth time 7, =
0.139 ms, in good agreement with the analytical result
Tan = 0.131 ms given by Eq. (9).

The case corresponding to a HHC detuning frequency
Awpg /21 = 2000 kHz is discussed in Fig. 2, where the nu-
merical calculation of the complex frequency shift shows
that the condition of case (b), i.e. w; K w,, is satisfied. To
better characterize the development of the instability, the
equilibrium distribution has been forced by artificially de-
creasing the radiation damping time for the first 2000 turns
to the value 7 = 0.12 ms. Figure 2(a) shows the longitudi-
nal bunch distribution densities after 30000 turns, display-
ing the onset of the instability driven by the coupled-bunch
mode u = 1. Figure 2(b) and (c) show the time evolution
of the bunch centroid and bunch length respectively, for 5
different bunches across the bunch train. Figure 2(d) shows
the bunch centroid and bunch length of all bunches after
30000 turns, clearly displaying the unstable coupled-bunch
mode p = 1. The time evolution of the coupled-bunch
mode u = 0 normalized to the natural bunch length g, is
shown in Fig. 2(e), while Fig. 2(f) and Fig. 2(g) show the
time evolution of the unstable coupled-bunch mode u = 1.
In Fig. 2(g) an exponential fit to the numerical result to ex-
tract the numerical growth time gives T, = 2.3 ms, in
good agreement with the analytical result 7,, = 2.4 ms
given by Eq. (8).
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