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Abstract

The phenomenon of synchrotron radiation (SR) from elec-

trons is at the core of modern accelerator based light sources.

While SR in the far field has been well characterized, the

near-field SR and its impacts on self-consistent electron

beam dynamics remain an ongoing topic. Since it is difficult

to experimentally characterize the near fields, it is desirable

to develop accurate and efficient numerical methods for the

design of these light sources. Here, we investigate a novel

method, originally proposed by Shintake and which poten-

tially has both high efficiency and accuracy. We focus on the

field calculation of this method and show that the original

idea has missed the important terms of fields due to electron

acceleration and therefore only applies to a linear motion.

To correct this limitation we developed a modified algorithm

that gives consistent fields with direct calculations using the

Liénard-Wiechert equation. Some basic signatures of the

near-field SR fields are also drawn for a cyclotron motion

by using this modified approach.

NEAR-FIELD SYNCHROTRON

RADIATION AND ITS MODELING

Synchrotron radiation (SR) in the far field has been well

characterized and routinely used in synchrotron beamlines

worldwide for advanced applications such as x-ray spec-

troscopy and structural imaging [1]. Meanwhile, the near-

field SR and its impacts on self-consistent electron beam

dynamics have only received increasing attention in recent

years. The continuing quest for coherent x-ray free electron

lasers [2] and advanced accelerators [3] require electron

beams of ultra-high brightness. The power of SR grows

nonlinearly with the beam brightness or energy, and there-

fore nonlinear beam dynamics inevitably arises due to the

strong near-field SR. For instance, the coherent SR fields

may cause collective beam instabilities such as longitudinal

energy modulation, and increase the beam emittance; the

incoherent fields may generate random shot noises and phase

space diffusion, leading to beam quality degradation.

Different from the far-field SR, it remains a challenge to di-

rectly characterize the near-field SR in experiments. Several

simulation models have therefore been considered [4]. Stan-

dard beam design tools mostly treat the Liénard-Wiechert

(LW) potential and adopt the steady-state assumption. This

approach is generally not self-consistent by ignoring the tem-

poral dependence of the emission, and hence is only suitable

for describing the linear stage of the instability growth. On

the other hand, the particle-mesh models via discretization
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of the full-wave Maxwell equations (e.g. Finite Difference

Time Domain, FDTD) are self-consistent for the coherent

effects, but their accuracy is severely limited by numerical

errors due to numerical dispersion and numerical Cherenkov

instability.

In this study, we investigate a novel near-field method

that can potentially overcome the above issues. In this origi-

nal idea proposed by Shintake [5], one calculates radiation

fields at the current position and then propagates them out-

wards to obtain real-time fields at nearby locations. By

mapping the fields onto a co-moving mesh, it allows for

greatly reduced propagation errors in comparison to the

FDTD method. Most importantly, it allows for real-time

selection of the temporal information that is only relevant

to the current beam-radiation interaction. This can be much

more efficient than the LW method where complete emission

history has to be kept for reconstructing fields at the present

time.

So far, the Shintake’s near-field (SNF) method has been

mainly used to construct field patterns in nearby zones. The

calculation of the fields remains to be verified. As a first step

towards building a comprehensive framework, we provide a

validation of the field calculation by applying it to a fixed

observation point near the electron trajectory. We discovered

that the original idea of Shintake missed the important term

of the acceleration field and applied only to linear electron

motion. To correct this limitation we come up with complete

steps that can accurately determine the fields at arbitrary

positions. As we shall see, the modified algorithm gives

consistent field calculations with the LW equation. Some

basic signatures of the near-field SR due to cyclotron motion

are also explored with the updated method.

SHINTAKE’S NEAR-FIELD METHOD

In the original idea [5], a moving electron emits wavelets

of electromagnetic fields which form a set of outgoing spheri-

cal waves in free space by following the wave equation. Once

emitted, the spherical wavefronts will expand outwards at

the speed of light. The centers of these spheres emitted at

different times, however, shift in positions due to the electron

motion. The wavelet propagation direction is related to the

electron instantaneous velocity at the time of emission, and is

given by the Lorentz transformation of the unit propagation

vector ®k (essentially a displacement vector) from the elec-

tron to the lab frame: kx = (cos θ ′ + β)/(1 + β cos θ ′), ky =
sin θ ′/γ(1 + β cos θ ′), where θ ′ is the propagation angle in

the electron frame relative to the electron velocity ®β (nor-

malized by c), and γ = 1/
√

1 − β2 is the electron’s Lorentz

factor.
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Figure 1: (Color online). (a) Wavelet trajectories (blue lines)

and wavefronts (red lines) for an electron of γ = 1.1 per-

forming a linear motion (green line); (b) Schematic of a

trajectory interpolation to find the intermediate position xi
from which the emitted wavefront Wi exactly crosses the

fixed point A at time t.

With the ®k vectors found, one can obtain the positions of

the wavelets on the i-th wavefront, Wi , at the N-th time step

(N > i) by

®Pi, j(N∆t) = ®ri + c(N − i)∆t®ki, j, (1)

where j is the index of the wavelet directions, and ®ri =
®r0+

∑

®v(m∆t)∆t (where the sum is over m = 1, 2, ..., i) is the

electron position at the time of emitting the i-th wavefront.

Figure 1(a) shows the resulting field pattern due to a linear

electron motion. Notice that, by Eq. (1) one actually tags

the outermost wavefront as W0, therefore avoids iterating all

the wavefronts at each time step as opposed to the original

proposal [5] where the innermost is tagged as W0.

VALIDATION OF FIELD CALCULATION

In SNF method, fields are defined on the wavefronts. To

obtain fields in a position not on the wavefronts, one may

interpolate the fields at adjacent wavelets to the fixed point,

but it can introduce errors especially when vastly different

spatial scales (due to incoherent and coherent SR fields) are

involved. Instead, we consider finding the retarded electron

position from which the emitted wavefront exactly crosses

the point at the observation time. This is essentially an inter-

polation of the electron trajectory, and the fields obtained in

this manner are precise except for the approximations made

in discretizing the electron motion.

Trajectory Interpolation

Figure 1(b) shows a sketch for the trajectory interpolation.

A is the fixed point. Wn and Wn+1 are the most adjacent

wavefronts that were emitted at the space-time (xn, tn) and

(xn+1, tn+1), respectively. To find the exact point xi (so the

exact wavefront Wi), we first locate the segment [xn, xn+1]
within which xi resides; this can be achieved by using the

geometric relations:

| ®xnB | ≥ | ®xnA|; | ®xn+1 A| > | ®xn+1C |, (2)

where | ®xnB | = c(t − tn) and | ®xn+1C | = c(t − tn+1).

Then the exact point ®xi = ®xn + ®vn(ti − tn) can be obtained

by solving ti from the quadratic equation:

c(t − ti) = | ®xi A| = | ®xA − [ ®xn + ®vn(ti − tn)]|, (3)

where ®vn = ®v(®xn). Notice that, in the above equation the

electron velocity during [xn, xn+1] is fixed due to the dis-

cretization of electron trajectory.

Double Lorentz Transformation

The vector pointing from the emitter to the observer is

®r = ®xA − ®xi . In order to calculate the fields at the fixed

point, it is conceptually simplest to perform double Lorentz

transformation to and from the electron instantaneous rest

frame along axes projected by the electron velocity ®βi = ®βn.

Below we use the subscript 1 to represent the longitudinal

component along ®βn and 2 the transverse component. The ®r
vector is transformed to the electron frame by r ′

1
= γ(r1 −

β∆t), r ′
2
= r2, where ∆t = |®r |/c = t− ti is the time difference

between the observer time and the retarded time in the lab

frame. In the electron frame, we first consider the fields due

to the charge at rest, which is given on the corresponding

wavefront by
®E ′
vel = −en̂′/r ′2, (4)

where n̂′
= ®r ′/r ′. Transforming back to the lab frame, we

have E1 = E ′
1
, E2 = γE ′

1
. The field is also partially converted

into magnetic field as B3 = γβE
′
2
.

In the original SNF method, only the above velocity field

is considered which only applies to a linear motion. However,

for a nonlinear motion, non-inertial force or acceleration is

also present in the instantaneous rest frame. For the fields

due to the acceleration only, one can calculate according to

®E ′
accel = e

n̂′ × (n̂′ × ®a′)

r ′
, (5)

where ®a′
= dβ′/dt ′ is the acceleration in the electron frame.

For a cyclotron motion, there is only transverse acceleration

®a⊥ which transforms as ®a′
⊥ = γ

2 ®a⊥. When transforming

the acceleration field back to the lab frame, there are also

magnetic field B′
accel
= n̂′ × ®E ′

accel
added to the transverse

component through E2 = γ(E
′
1
+ βB′

accel
).

Benchmarks and Basic Radiation Signatures

To validate the above scenario, we apply it to a cyclotron

motion of radius R = 1 m, γ = 200 and a fixed point off

the reference trajectory by Roff = 1 × 10−4R. All the other

quantities are normalized properly to R, e.g., t to R/c, length

to R, and cyclotron frequency ωc to c/R. The results are

shown in Fig. 2 and compared to the LW equation (primes

indicate quantities at the retarded time),

®E ′
=

e(n̂′ − ®β′)

γ2r ′2(1 − n̂′ · ®β′)
+

en̂′ × [(n̂′ − ®β′) × ®β′]

r ′(1 − n̂′ · ®β′)
. (6)

For the latter, the fields are directly calculated at the elec-

tron time, te, and the observation time is corrected by the
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Figure 2: Comparison of the SNF calculation with the LW

equation for a fixed point near the trajectory of a cyclotron

motion.

time needed to propagate the fields from the emitter to the

observer, t = te + r(te)/c; this suggests the observation time

for this direct approach is non-uniform. Good agreement

is achieved in the total field amplitude, and the fields are

dominated in this case by the acceleration field.

Finally, with the above scenario we also study some basic

signatures of the near-field SR due to a cyclotron motion.

Figures 3(a) and (b) show the dependences of the velocity

field and acceleration field with the electron energy γ; the

temporal behavior of both scales exactly as γ3, but for the

amplitude the acceleration field scales as γ3.5 and the ve-

locity field scales as γ2 (minor difference appears for the

field maximum). Notice that, these trends are valid for the

near field at a distance scaled with γ as Roff = 10−4Rγ. This

self-similarity of the fields is an important signature of the

near-field SR [6]. The dependence of the total fields with Roff

shown in Fig. 3(c) is less trivial: it roughly changes as R−0.5
off

in the near field, i.e, Roff ≪ 1, but deviates greatly from the

trend in the far field as soon as Roff ≥ 1. However the tem-

poral behavior is basically invariant for different distances.

The latter is confirmed in the spectra (for the x component

of the total field) presented in Fig. 3(d) which shows simi-

lar critical frequency despite of lower amplitudes for larger

Roff . A difference in the far-field spectra from the near-field

ones is the loss of the low-frequency (or long-wavelength)

components; this is due to the fact that the velocity field,

essentially long-wavelength space-charge field, is limited to

the near field. The critical photon energy is consistent with

the formula Ec(keV) = 0.665E2
e(GeV)B(T), where Ee is the

electron energy and B is the applied bending magnetic field.

SUMMARY

In summary, we have examined the field calculation of

Shintake’s method for modeling near-field SR. It is discov-

ered that the original idea of Shintake missed the important

acceleration fields which are prevalent for a nonlinear motion.

To correct this limitation a modified scenario combining a

trajectory interpolation and a double Lorentz transformation

is implemented, which gives consistent field calculations
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Figure 3: (a) The velocity field (scaled down by γ2) and (b)

the acceleration field (scaled down by γ3.5) for different γ,

where Roff is scaled with γ as 10−4Rγ; (c) The total fields

(scaled up by R0.5
off

) for different Roff and (d) corresponding

spectra for the x component of the total fields, where γ is

fixed to be 200.

with the Liénard-Wiechert equation. Some basic signatures

of the near-field SR have also been obtained by applying this

modified approach to a cyclotron motion.

ACKNOWLEDGEMENTS

Research presented in this article was supported by the

Laboratory Directed Research and Development Program of

Los Alamos National Laboratory (LANL) under the project

number 20190131ER. Computations were supported by the

Institution Computing Program at LANL.

REFERENCES

[1] M. Chergui and A. H. Zewail, “Electron and x-ray methods

of ultrafast structural dynamics: Advances and applications”,

ChemPhysChem, vol. 10, no. 1, pp. 28–43, 2009.

[2] B. W. McNeil and N. R. Thompson, “X-ray free-electron

lasers”, Nature photonics, vol. 4, no. 12, p. 814, 2010.

[3] E. Esarey, C. Schroeder, and W. Leemans, “Physics of laser-

driven plasma-based electron accelerators”, Reviews of mod-

ern physics, vol. 81, no. 3, p. 1229, 2009.

[4] G. Bassi et al., “Overview of csr codes”, Nuclear Instruments

and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, vol. 557,

no. 1, pp. 189–204, 2006.

[5] T. Shintake, “Real-time animation of synchrotron radiation”,

Nuclear Instruments and Methods in Physics Research Sec-

tion A: Accelerators, Spectrometers, Detectors and Associated

Equipment, vol. 507, no. 1-2, pp. 89–92, 2003.

[6] C. Huang, T. J. Kwan, and B. E. Carlsten, “Two dimen-

sional model for coherent synchrotron radiation”, Physical

Review Special Topics-Accelerators and Beams, vol. 16, no. 1,

p. 010 701, 2013.

10th Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-MOPGW116

MC5: Beam Dynamics and EM Fields
D05 Coherent and Incoherent Instabilities - Theory, Simulations, Code Developments

MOPGW116
399

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I


