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Abstract  
Modern high-performance circular accelerators require 

sophisticated corrections of nonlinear lattices. The beam 
betatron tune footprint may cross many resonances, re-
ducing dynamic aperture and causing particle loss.  

However, if particles cross a resonance reasonably fast, 
the beam deterioration may be minimized. This paper 
describes the experiments with the beam passing through 
a half-integer resonance stopband via tune modulation by 
exciting synchrotron oscillations. This is the first time that 
beam dynamics have been kept under precise control 
while the beam crosses a half-integer resonance. Our 
results convincingly demonstrate that particles can cross 
the half-integer resonance without being lost if the pas-
sage is reasonably fast and the resonance stopband is 
sufficiently narrow. 

INTRODUCTION 
It has become standard practice to constrain the parti-

cle’s tune footprint while designing the storage ring lat-
tice so that the particle tunes fit between harmful reso-
nances, which limit ring dynamic aperture (DA) [1]. This 
approach, known as “tune confinement”, puts tight limits 
on the magnitude of the tune shifts with amplitude and 
with momentum. The latter requires labor-intensive opti-
mization of the off-momentum DA and the corresponding 
tune footprint for the large momentum deviations to 
achieve a reasonable lifetime.  

As nonlinearities of the modern ring lattices are much 
enhanced as compared with the previous generation of 
synchrotrons, it is becoming more and more difficult to 
keep the off-momentum tune footprint inside the range 
surrounded by the resonance lines [2-4]. One of the major 
resonances is the half-integer resonance and it is always 
treated as an unstable working point that may cause beam 
loss. The half-integer resonance poses concerns in many 
circular accelerators, such as modern synchrotron light 
sources [2, 3], heavy ion medical accelerators [5] and 
non-scaling fixed-field alternating-gradient (FFAG) ac-
celerators [6]. 

Intuitively, if the particle crosses the stopband quickly, 
one may expect that the betatron oscillation amplitude 
will not increase substantially thereby keeping the particle 
within the machine acceptance. At the same time, the tight 
tolerances with which modern lattice elements can be 
designed and produced afford much narrower resonance 
stopbands when compared with machines built decades 
ago. 

Recently modern synchrotrons advanced to Multi-Bend 
Achromat lattices featuring small dispersion and low beta 
functions, and high nonlinearity of the particle motion due 
to stronger sextupoles. In certain cases [2, 3], the tune 
spread for on-energy beam was successfully minimized, 
but the off-momentum tunes swing across the major reso-
nances, as shown in Fig. 1. However, the tracking result 
did not show particle losses in contrast to the experiments 
[5, 7] on resonance crossing where the beam losses were 
observed.  

In this paper, we investigated the beam dynamics dur-
ing crossing of a major resonance in NSLS-II, both by 
design and by experiment, to achieve the storage ring 
conditions where the beam crosses the ½ resonance with-
out particle loss [8]. 

Figure 1: Fractional tune shift with momentum deviation 
as presented in [2, 3]. 

DYNAMICS OF CROSSING A STATIC RE-
SONANCE STOPBAND 

We consider a storage ring model with large chromatic 
tune shift and a particle with momentum deviation 𝛿 = ∆௣௣  
up to the second order writing the particle’s tune shift as:  𝜈ሺ𝛿ሻ = 𝜈଴ + 𝜉ଵ𝛿 + 𝜉ଶ𝛿ଶ + 𝑂ሺ𝛿ଷሻ,  (1) 

where 1 and 2 are linear and 2nd order chromaticities. 
In the following, we constrain our analysis to the 2-
dimensional case of y and  . For our experiments we kept 
1y=+1 and tuned the 2nd order chromaticity to 2y=+300 
(the same value as in [2, 3]) by changing ring sextupoles 
while maintaining small tune shifts with amplitude.   

Next we assume that the particle energy oscillates with 
the maximum deviation 0 and this synchrotron oscilla-
tion, for simplicity, is taken as 𝛿ሺ𝑛ሻ = 𝛿଴ sinሺ2𝜋𝜈௦𝑛ሻ, 
where 𝜈௦ is the synchrotron tune and n is the number of 
turns around the ring. An illustration of the problem under 
consideration is shown in Fig. 2. As can be seen, the beta-
tron tune of a longitudinally oscillating particle crosses 
the half integer resonance R=p/2, which has a stopband 
width that depends on quadrupole errors. The resonance is 
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characterized by a stopband with the width 𝐽௣, which is 
heuristically defined as the boundary of the tune range 
where the peak beta-beat Δ𝛽/𝛽 = ఉିఉబఉబ  reaches 100% [9]. 
Here p is an integer number, 𝛽଴ is the reference beta func-
tion calculated from the unperturbed lattice model, and 𝛽 
is the measured beta function obtained from beam oscilla-
tions excited by a pulsed kicker and measured by beam 
position monitors (BPMs) distributed around the ring 
[10].  

Figure 2: Particle’s synchrotron oscillations with maxi-
mum amplitude 0 crossing resonance at R=p/2 with the 
stopband width of 𝐽௣. 

We define R= (R) as the value of the energy devia-
tion where the particle’s tune crosses the resonance R. 
The boundaries of energy deviation that correspond to the 
resonance stopband 𝐽௣ are (neglecting the contribution 
from the linear chromaticity 1 and assuming that  ௣ଶ െ𝜈଴ ൐0 and 𝜉ଶ is positive):  

   𝛿ோ േ ୼ఋೃଶ = ටሺ௣/ଶ ିఔబሻേ௃೛/ଶకమ   

For calculating the number of turns the particle takes to 
cross the stopband we get:  Δ𝑛ோ =
൞ ቀasin ൬ቀ𝛿ோ + ୼ఋೃଶ ቁ 𝛿଴ି ଵ൰ െ asin ൬ቀ𝛿ோ െ ୼ఋೃଶ ቁ 𝛿଴ି ଵ൰ቁ /ሺ2𝜋𝜈௦ሻ,   𝑖𝑓 𝛿଴ ൐ 𝛿ோ + ୼ఋೃଶacos ൬ቀ𝛿ோ െ ୼ఋೃଶ ቁ 𝛿଴ି ଵ൰ /ሺ𝜋𝜈௦ሻ,    𝑖𝑓𝛿ோ െ ୼ఋೃଶ ൏ 𝛿଴ ൑ 𝛿ோ + ୼ఋೃଶ             

(2) 
Due to the radiation damping the amplitude of energy 

oscillations  will decay below R after the time interval 
T=NcrossTs/2, where Ts is the synchrotron period, 𝑁௖௥௢௦௦ = െ2 ఛೞ்ೞ 𝑙𝑛 ቀఋೃఋబቁ corresponds to the number of 
crossings of the resonance stopband when 𝛿଴ ൐ 𝛿ோ and s 
is the damping time. This expression is an approximate 
result since we are not taking quantum excitation into 
account. 

CONTROLLING THE RESONANCE 
STOPBAND WIDTH 

Quadrupole imperfections of the linear lattice lead to a 
betatron tune shift as well as forming a finite bandwidth 
of resonances on the tune diagram. The tune shift and 
half-integer stopband width are determined correspond-
ingly by the 0th and pth harmonics of quadrupole pertur-
bations around the machine:  

   Δ𝜈௧ = ଵସగ ∑ 𝛽௤ሺΔ𝑘ଵ𝐿ሻ௤௤   𝐽௣ = ଵଶగ | ∑ 𝛽௤ሺΔ𝑘ଵ𝐿ሻ௤𝑒ି௜௣థ೜௤ |   (3) 
where p is close to 2𝜈, q runs over the lattice quadru-

poles, 𝛽 and 𝜙 = ଵఔబ ׬ ௗ௦ఉ௦଴  are betatron amplitude and 
phase and Δ𝑘ଵ𝐿 = Δ𝐵ᇱ𝐿/ሺ𝐵𝜌ሻ is the perturbed quadru-
pole focusing strength.  

The way to control the resonance stopband width 𝐽௣ is 
to act on the pth harmonic of ሺΔ𝑘ଵ𝐿ሻ௤ while maintaining 
the 0th harmonic caused by the same ሺΔ𝑘ଵ𝐿ሻ௤ equal to 
zero. Methods of minimizing the stopband width were 
presented in [11].   

In the experiments we characterized the resonance 
stopband using the two ways of tune scans described 
above, resulting in the measured 𝐽௣ of 0.016 with accura-
cy of about ±0.0025. We assume the beta-beat distribution 
along the ring as the sum of harmonic functions and cal-
culate the r.m.s. beta-beat driven by random Gaussian 
distributed errors in the ring quadrupole settings as: 〈∆𝛽𝛽 〉௠௔௫ ൎ ඥ𝑀௤2 sin ሺ2𝜋𝜈ሻ 〈𝛽Δ𝑘ଵ𝐿〉 

where Mq is the total number of quadrupoles. Using the 
measured value of beta-beat (3%) we calculate the r.m.s 
perturbations in Mq=300 NSLS-II quadrupoles as 〈Δ𝑘ଵ/𝑘ଵ〉=0.13%. From these perturbations we estimate 
the ½ resonance stopband width 𝐽௣ via (3) as 0.015, which 
closely corresponds to our measurements.  

To control the stopband width, defined in (3), we se-
lected several quadrupoles separated by n + /2 in beta-
tron phase advance 𝜑 = ׬ ௗ௦ఉ௦଴  and changed their strength 
by ሺΔ𝑘ଵ𝐿ሻ௤ yielding the maximum change in the stop-
band width of ଵଶగ ∑ 𝛽௤ሺΔ𝑘ଵ𝐿ሻ௤ே೜௤ୀଵ . 

EXPERIMENTAL RESULTS 
We carried out our experimental studies at the NSLS-II 

storage ring. The NSLS-II is a high-brightness synchro-
tron light source based upon a 3-GeV storage ring with a 
30-cell double-bend-achromat lattice complimented by 
damping wigglers in order to reduce the emittance below 
1 nm·rad [12]. In the following table we present the beam 
parameters of the NSLS-II storage ring relevant to our 
experiments. 

Table 1: NSLS-II Storage Ring Beam Parameters  

Vertical betatron tune 16.26…16.55 

Revolution period, µsec 2.64 

Synchrotron tune 0.00625 

Damping time (x/y/z), msec 55.3/55.3/27.7 

Vertical emittance, pm·rad 30 

Energy spread, % 0.05 
In the experiment, we stored a beam current of a few 

milliamperes, switched to the lattice with high 2 and 
then moved the betatron tune to a near half-integer reso-

10th Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-MOPGW125

MC5: Beam Dynamics and EM Fields
D02 Non-linear Single Particle Dynamics

MOPGW125
411

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I



nance (0~16.47) by controlling non-dispersive quadru-
poles. In order to modulate the off-energy tune in this 
experiment, we developed a method of rapid excitation of 
coherent beam energy oscillations (“RF jump” or “RF 
pinger”, [13]). Turn-by-turn (TBT) beam transverse posi-
tions and beam relative intensity were measured with 
BPMs. Beam TBT energy oscillation was retrieved from 
the horizontal data of the BPMs located in the dispersion 
region. 

The beta-beat along the ring at different tunes was re-
trieved from BPM TBT data to measure the stopband 
width. The beta beat for the nominal lattice was corrected 
to ~3% with stopband width at 0.016. We called these 
experimental conditions the “Small stopband” scenario.  

With the same RF jump and transverse kicker settings 
we designed another experimental scenario in which the 
quadrupole strength was adjusted to expand the stopband 
width from 0.016 to 0.038, so that the beam tune stays 
within the stopband much longer during the RF jump. We 
called these experimental conditions the “Large stop-
band” scenario. 

The measurement results are shown in Fig. 3 including 
traces of the vertical tune, vertical beam position and 
beam normalized intensity. Beam energy oscillation am-
plitude is about +/-1.4% (peak to peak), as retrieved from 
the horizontal beam position measured by BPMs. The 
tune modulation is calculated using Eq. (1) and presented 
in the upper plots. Different colors correspond to the 
different values of the initial tune 𝜈଴. When the tune ap-
proaches the resonance, motion in the vertical plane ex-
hibits the behavior typical for parametric resonance, i.e. 
modulation at the detuning frequency , which is in the 
range between 20 and 120 turns for our experimental 
conditions. 

Figure 3: “Small stopband” and “Large stopband” case 
Turn-by-turn beam parameters (upper plot: calculated y-
tunes with dashed lines indicating borders of the stop-
band, lower plot: BPM measured TBT y-position on left 
axis and normalized beam intensity on right axis) for the 
three separate experiments with different initial tunes. 

In the left plot of Fig. 3, it includes the data with differ-
ent initial vertical tunes: 0.470 (black), 0.483 (blue), 
0.493 (red). With these initial conditions the beam takes 
approximately 11, 12 and 17 turns to cross the resonance. 
The difference in the oscillation amplitude after the first 

crossing is visible but in every case there is no beam loss. 
In the “Large stopband” scenario, as shown in lower plot 
of Fig. 3, there is no beam loss while the tune is outside of 
the resonance stopband, but when the beam is moving 
through the resonance for about 40 turns, particle loss 
occurs. The losses then repeat during subsequent synchro-
tron oscillations.  

With Eq. (2) we estimate that the maximum number of 
turns the beam can spend within the “Small stopband” is 
about 25 and for the “Large stopband” it is about 49. We 
estimate the betatron amplitude growth [8] under our 
experimental conditions as a factor of 3.5 for the “Small 
stopband” and a factor of 350 for the “Large stopband”. 
This large amplification factor for the “Large stopband” 
leads to significant beam loss as demonstrated by our 
experiments. Since about half of the beam intensity is lost 
after the first crossing of the stopband, the plots of verti-
cal TBT data in this case are not representative of the 
actual beam betatron motion.  

We note that we were able to study vertical TBT data 
corresponding to the first crossing of the resonance during 
the first half-period of the energy oscillation. Clear expo-
nential-like growth of betatron motion is visible only 
during the first crossing. During the calculating few syn-
chrotron oscillations the BPM TBT signal blurs due to the 
decoherence and filamentation of the beam as the parti-
cles are repetitively passing through the stopband.  

CONCLUSIONS 
In summary, we carried out a study focused on beam 

dynamics in a storage ring featuring a large chromatic 
tune footprint that can span across major resonances. We 
have shown that it is possible, both by design and by 
experiment, to achieve the storage ring conditions where 
the beam crosses the ½ resonance without particle loss. 
This can be accomplished if the stopband is narrow due to 
small residual field errors in the ring magnets and is fur-
ther controlled by accurate cancellation of the harmful 
harmonic of the field errors around the ring. The combi-
nation of the small stopband width with a large magnitude 
of nonlinear chromaticity leads to the rapid crossing of 
the resonance, which does not cause loss of the particles 
as demonstrated by our experiments.   
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