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*Abstract

Regarding the development of new accelerator facilities
% for high-intensity ion beams, the transfer of ions to higher
5 charged states is a prerequisite achieve the desired ener-
2 gies. At present, mainly gas and film stripper are used for
& increasing the particle charge state. However, the stripping
3 2 technologies such as film and gas stripper either requires
E great effort or are not suitable. One promising alternative
;: to the before mentioned methods is the use of a plasma as
£ stripper. The advantages of a plasma stripper are a higher
§ effectiveness as a gas stripper and a higher lifetime as a
2 ﬁlm stripper. For this reason, stripper is proposed for the
2 FAIR project (Facility for Antiproton and lon Research), a
”g new international accelerator laboratory at the GSI in
2 Darmstadt, Germany.
£ In experiments with a Z-pinch plasma, the effect of a
G plasma as a stripper method for increasing the equilibrium
& charge states has already been demonstrated [1]. A disad-
E vantage of Z-pinch, however, is the electrode erosion,
E whereby the lifetime of the system is limited.
E In the case of an inductive ignition of a plasma no elec-
& trode erosion occurs, and the magnetic field extends pre-
adominantly in the centre of the coil parallel to the beam has
= no influence on the beam optics.
< Due to a high interest in the stripping method based on
gthe ion bearp—plasma intgraction, the plasma physics group
of the Institute of Applied Physics at the University of
= Frankfurt is researching on an alternative for the Z-pinch
Splasma cell. During our research, various prototypes and
> solutions have been investigated. As a result, the optimal
p ignition criterion for the inductively coupled plasma igni-
% tion was determined, the optimal geometry of the discharge
f vessel, the required particle density and temperature of the
¢ plasma were calculated [2] [3]. Different coil configura-
g tions have been developed, built and tested [4] [5] [6]. With
o some of them (spherical theta pinch and spherical screw
f pinch), beam time experiments were performed [7].
-°§ This contribution presents the current state of plasma
= strippers with fully ionized hydrogen with simultaneously
2 high particle densities in the range of some 10" cm™ for
2 FAIR.
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INTRODUCTION

Several processes are responsible for the interaction be-
.2 tween ion beam and stripping medium. The projectile ions
are deprived of electrons on their way through the target by
© Coulomb collisions, but at the same time the electrons are
g trapped by various recombination processes. Since these
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processes are simultaneous, the final state of ions is deter-
mined by dynamic equilibrium. When ionization cross sec-
tions for plasma and cold gas targets are virtually identical,
the recombination cross sections are determined by several
state dependent processes. Recombination is the sum of
capture-bound electrons, radiative recombination, and Au-
ger recombination (dielectric recombination).

In cold gas, the capture of bound electrons is the recom-
bination with the largest cross section. An example of io-
dine projectiles with 1.5 MeV / u in hydrogen gas may be
up to 10 cm?® / s (Figure 1).
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Figure 1: Rates for 1.5 MeV/u iodine in cold hydrogen gas
with ne = 10'7 ¢m3. Here the equilibrium charge state is
about 21 (arrow), thus considerably less than in the plasma
case [8].

However, this type of recombination is not relevant to
the fully ionized plasma target because of the absence of
such electrons (Figure 2).
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Figure 2: Equilibrium charge state Zeq for I — H. The tar-
get is either 10 eV hydrogen plasma with ne= 10!7 cm™ or
cold gas of the same density. Dielectronic recombination is
not considered [8].
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The equilibrium charge states for the uranium ions (Ta-
ble 1) and gold ions (Figure 3) have been calculated by V.
Shevelko in the framework of expertise requested by the
working group.

Table 1: Theoretical calculation of the equilibrium charge
state of uranium beam with an initial charge state of Q =
4+ with cold gas and plasma.

Energy Cold Plasma Acm Acm
MeV/u gas <Q> ne= ne=
<Q> 107¢m?3 108em3
1 13 49 230 23
3 37 64 800 80
10 75 86 2200 220
3.6 MeViu Au™ >
74 cm H plasma at muiation
20 n=3E17cm’ -
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Figure 3: Simulated charge state distribution for gold ions
with initial charge state of 26+.

EXPERIMENTAL SETUP
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Figure 4: Experimental set-up of the Theta Pinch plasma.

The plasma stripper experiment is one of the most im-
portant research activities of our research group. A major
feature of the pinch plasma is the use of a large cylindrical
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discharge vessel surrounded by a spiral induction coil,
which is connected to a capacitor bank via coaxial trans-
mission line. In resonant circuit the discharge is working
with an own frequency below 10 kHz.

The measurements were done with a stored energy of
around 15kJ and can be increased up to 50kJ. The induction
currents reach high values and moderate current rise times.
The stored energy is switched by a thyratron switch. One
of the principal advantages of this concept is the high en-
ergy transfer efficiency of up to 40% and the potential of
high pulse repetition rates. For the integration into the
beam line, differential pumping systems are at each side of
the discharge vessel. Figure 4 shows the experimental set
up of the plasma stripper device. In addition, a differential
pump system is symmetrically connected for attaching the
experiment to the beam line.

EXPERIMENTAL RESULTS

Results from beam times with spherical theta pinch and
screw pinch were previously presented at IPAC [9]. So,
what is hereby presented are the newly obtained results
from the beam time at GSI end of March 2019.

For synchronisation of the plasma of the theta pinch to
the ion beam the investigation of the ignition behaviour are
of importance. The ignition and luminous effect of the
Plasma was measured with a fast photodiode. The follow-
ing Figure 5 shows the current and ignition behaviour of
the Spherical Theta Pinch. The capacity of the experi-
mental set up was 60 pF. The measurement was performed
at a voltage of 20 kV at a pressure of 30 Pa (H2). From the
oscillating photodiode signal can be seen that the ignition
of the plasma will start during the second negative half
wave of the oscillating current and the brightest lumines-
cence effect is within the second positive half wave.
|
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Figure 5: Current and ignition behaviour of the Theta Pinch
plasma.

Another important factor for the efficiency of ion strip-
ping is the electron density. For this, time-resolved meas-
urements of the electron density were performed. The elec-
trical parameter like capacity (60uF), voltage (20kV) and
the pressure (30Pa) were almost identically to those of the
beam time. It was decided, during the beam time to in-
crease the voltage to 22kV. In this way, pressure could raise
to 40 Pa as well. To determine the electron density the Hf
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A
T% broadening was measured. Like the luminescence behav-
E; iour, the first peak of the electron density was measured at
Z the second negative current half wave and the maximum
%electron density of around 4.5*10'° cm™ was achieved at

_gthe second positive current half wave (Figure 6).
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Figure 6: Time resolved electron density.
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During the beam time the charge state distribution was
E measured for cold gas and plasma. The beam was Au+26
5 with an energy of 3.6MeV/u. Figure 7 shows the charge
i state distribution after crossing the stripping cell with cold
< gas and plasma. On the top of the Fig. 7 are the different
4 . . .
gachleved charge states. The electron density was in the
Srange of 1*10'%cm.
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= Figure 7: Charge state distribution of a 3.6MeV/u Au26+
g lon beam after crossing a hydrogen plasma in comparison
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2 During the gas discharge, the transmission of the ion
8 beam through the stripper cell was very low, which was
5 very likely due to parasitic magnetic field components out-
g side the coil. Consequently, the ion beam must be delayed
= for several hundred microseconds. In this case the mag-
S netic field was not so strong, but it led, on the other side to
£ lower plasma density. The charge state distribution with
< plasm is shifted to a higher ionisation degree of the Au-
= beam. The maximum charge state with plasma is between
'é +32 to + 34, whereas with cold gas the main charge distri-
£ bution is between +28 to +30.

Not all data has been evaluated by the just finished beam
time. Because the beam-plasma interaction took place
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much later, the plasma temperature must be determined at
the time.

CONCLUSION

The beam transfer through the experiment needs to be
improved. For this purpose, work is currently being carried
out on the shielding of the ion beam before and after the
coil. Also, the enlargement of orifices in differential pump-
ing system must lead to better transmission.

In general, the experiment was designed for much larger
voltages, which could not be completely exhausted due to
strong magnetic fields. After the problem with the influ-
ence of the magnetic field on beam penetration is solved,
discharge energy can be increased up to 50 kJ. With the
higher discharge energies, the energy input into plasma
also increases. This leads to much higher densities and tem-
peratures of plasma, which in turn results in better stripping
properties of the device. To separate the pressure from the
stripper to the vacuum of the accelerator a plasma window
was designed and is now under investigation.
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