
AUTOMATIC CLASSIFICATION OF POST MORTEM DATA FOR

REDUCED BEAM DOWN TIME

M. C. Chalmers∗, Y. E. Tan, ANSTO - Australian Synchrotron, Clayton, Australia

Abstract

Time spent recovering from faults that result in a rapid

loss of stored current (total loss of beam) can be costly to

the Australian Synchrotron facility and its researchers. The

identiication of a fault leading to total beam loss is assisted

by a large variety of investigative tools for speciic tasks, but

they do not often give a thorough overview of all systems

required to store beam. Post mortem data uniquely provides

insight into how the beam was behaving at the speciic time

the beam loss occurred. With machine learning, we ind that

we can automatically and rapidly identify many types of total

beam loss events by learning about the unique characteristics

in the post mortem data.

INTRODUCTION

Each year the Australian Synchrotron loses up to 50hrs of

scheduled beamline operations due to accelerator faults [1].

The most common faults which result in total beam loss

occur due to magnet power supply failures, RF and cooling

water (plant) faults (see Fig. 1). The post mortem data often

carries a signature pattern depending on which of these faults

caused the beam loss.

The purpose of this investigation is to begin assessing

the viability of a diagnostic tool, which will automatically

attempt to classify every total beam loss event. It’s envi-

sioned that doing so will reduce the amount of time search-

ing through diagnostic tools in order to identify faults, in

turn leading to faster recovery times, and reduced down time.
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Figure 1: Frequency of beam downtime categorised by the

system which caused the outage during beamline operatons.

Post Mortem Data

Many facilities capture and characterise post mortem infor-

mation, it is common to review this data to assess complex to-
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tal beam loss events [2]. The post mortem information used

here is collected from 98 beam position monitors around the

storage ring, capturing 16-20,000 samples of turn-by-turn

data [3]. The post mortem data cache is frozen and saved

when the stored beam position drifts outside a deined limit,

and activates the Equipment Protection System (EPS). The

most common failures have visually recognisable character-

istics. Figures 2 & 3 show examples of magnet power supply

failures and Fig. 4 shows when the RF is inhibited by the

EPS.
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Figure 2: Corrector fault example.
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Figure 3: Dipole fault example.

LEARNING METHOD

Data used in this study was manually classiied by review-

ing operations logs in order to attribute a fault to each beam

loss event [4]. Logistic regression was applied to the data
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Figure 4: RF inhibit example.

using gradient descent to minimise the cost function and

optimise the model [5]. The logistic function is:

�(�) = 1
�����(ℎ�(�(�)), �(�)) (1)

= 1
�[

�
∑
�=1

�(�) log ℎ�(�(�)) + (1 − �(�)) log(1 − ℎ�(�(�)))]

ℎ�(�) = 1
1 + �−��� (2)

The function for gradient descent with regularisation is:

�0 ∶= �0 − �
�

∑
�=1

(ℎ�(�(�)) − �(�))�(�)
0 (3)

�� ∶= �� − �[
�

∑
�=1

(ℎ�(�(�)) − �(�))�(�)� + �
���] (4)

Generating Learning Metrics

In all models, the x and y beam position as well as sum

current signals were used to characterise the beam at regular

intervals in time, to generate features for the algorithm to

learn from. Files were divided into 16 equal time segments

to characterise the beam loss evolvement, and the noise levels

were quantiied by calculating the root mean square for all

signals in all segments.

Other features were generated by sorting the data in each

segment by amplitude. The average of the irst 10 minimum

data points and 10 maximum data points in each segment

were calculated. This efectively places an upper and lower

threshold on the beam position during each time segment.

RESULTS

Three groups of fault comparisons were analysed in order

to test the classiiability of post mortem data, as follows:

RF Inhibit vs Noise

The RF inhibit examples were easily distinguishable from

the noise produced in the beams absence. The model

achieved 100% accuracy after training on a single exam-

ple of each fault and being tested on 20 independent events.

RF Inhibit vs All Faults

This model was trained on up to eight examples of each

fault (16 training examples in total), and tested on four ex-

amples of each fault (eight examples in total), to determine

the optimal number of examples to train on for maximum ac-

curacy. When comparing all faults versus RF Inhibit events,

the model performed less accurately than before (Table 1).

This is likely due to the fact that the training data included

examples with beam instabilities which resulted in rapid

beam loss which was similar in appearance to an RF in-

hibit. Secondly, the entire collection of post mortem iles

is remarkably diverse and the model likely had diiculty

characterising the non RF inhibit data, especially with such

a small training dataset. This should be addressed by in-

creasing the number of training and test datasets available,

and also increasing the number fault categories along with

better features to diferentiate between them with.

Table 1: Models were created for each run to determine the

optimal number of examples to train on. Accuracy could

not be improved past 87.5% (Run 2) due to limited testing

and training examples.

Run Test Training

Accuracy Examples

Run 1 37.50% 8

Run 2 87.50% 12

Run 3 87.50% 16

RF Inhibit vs Magnet (CPS & QPS) Faults vs Noise

In this section, up to six training examples of each fault

type were used (24 training examples in total) and four test

examples of each (16 test examples in total), to determine

the optimal number of examples to train on for maximum

accuracy. When restricting the model to include only four

common event types, the algorithm again demonstrated some

success (Table 2). During each run the number of examples

per fault category were increased one at a time, which im-

proved the models accuracy at irst. Improvements were not

able to be made past Run 3, again due to the small number

of training and test examples available.

Later trials involved training on data from on all sectors

instead of just the irst, this was done with one fault category

at a time so that the efect of each one could be quantiied.

The same total beam loss events were used for training and

testing as before so that the efects could be measured rela-

tive to the previous results (Table 2). Applying this method

to the corrector power supplies (CPS) was highly successful
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Table 2: Models were created for each run to determine

the optimal number of examples to train on. Accuracy was

limited to 68.75% after training on three examples.

Run Test Training

Accuracy Examples

Run 1 62.50% 4

Run 2 62.50% 8

Run 3 68.75% 16

Run 4 68.75% 24

at increasing the prediction accuracy (Table 3). The opposite

occurred when the model was trained on all sectors of the

quadrupole (QPS) failure data, this appears to be because

the data for quadrupole failures is highly inconsistent. Split-

ting the Noise and RF Inhibit data into sectors provided no

accuracy increases.

Table 3: Models were created to determine which faults can

be modeled more accurately by using data from all sectors.

Run Test Improvement

Accuracy

RF 68.75% 0%

QPS 62.50% -6.25%

Noise 68.75% 0%

CPS 87.50% +18.75%

LIMITATIONS

This study was limited by the fact that the data was ex-

humed from the archive, making it susceptible to documenta-

tion errors that would result in incorrect classiication during

training. An upgrade in BPM hardware in 2017 has also

meant that without extensive pre-processing, the data is not

always comparable for the same event type before and after

the upgrade, this resulted in less data being available to use

in the study.

FUTURE IMPROVEMENTS

The method of dividing each post mortem example into

16 time segments is crude and imprecise, future studies will

investigate improved statistical measurement for better fea-

tures. A sliding window technique could be used to identify

the speciic timing of thresholds being reached. For example

the length of the decay period could be identiied by search-

ing the post mortem data for when the beam irst becomes

unstable and when the beam current irst reaches zero. It’s

likely that using the beam dispersion and ofset to estimate

the beam energy could lead to accuracy improvements as

well.

Data produced speciically for this purpose could improve

the precision of the models created and remove any errors in-

troduced through the documetation errors already mentioned.

Introducing new realtime variables could also extend the

functionality of this tool. With the right variables it would be

possible to assess the beam quality and provide pre-emptive

warning of a potential loss of beam. It will enable early fault

intervention and possibly even prevention of total beam loss

events. Notable issues where real-time intervention may

be possible include those which evolve over a timeframe in

the order of minutes or greater, this could typically include

feedback system malfunctions and climate control faults.

CONCLUSION

When given speciic and well-deined events to classify,

the models developed, while limited in scope were efective

at classifying post mortem data. With the right training data

and distinct faults to categorise, it was possible to predict

the cause of a beam loss event with 87% accuracy. Metrics

used to generate features could be improved for situations

were diferent faults produce very similar data sets and when

identical faults produce highly variable data sets. More work

is needed to improve the amount data available for training

and testing models.
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