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Abstract

The electro-magnetic (EM) fields within a super-con-
= ducting radio frequency (SRF) cavity can be sufficiently
"~ strong to deform the cavity shape, which may lead to a pon-
\‘9 deromotive instability. Stability criteria for the self-excited
| mode of cavity operation were given in 1978 by Delayen.
“ The treatment was based on the Routh-Hurwitz analysis of
£ the characteristic polynomial. With the Wolfram modern
*g analytical tool, 'Mathematica', we revisit the criteria for an
g SRF cavity equipped with amplitude and phase loops and
2 a single microphonic mechanical mode.

INTRODUCTION

Whereas generator driven RF cavity systems have been
g used for charged-particle acceleration for nearly a century,
2 self-excited (SE) resonance has been considered [1,2] for
E only three decades. SE has two-parameters (0,%¥) and is
o less intuitive. Our starting point is the masterful exposition

by Delayen [2]. It must be emphasized that SE loop is an
= enabhng technology for SRF. The EM resonance width is
kS ° exceedingly small compared with the excitation frequency;
g so, without prior knowledge, finding (and driving) the res-
,3 onance can be difficult until its location is known. And, of
Z course, Lorentz force detuning (LFD) will change the res-
2 onant frequency as the amplitude is increased. A numerical
Z treatment is given by Joshi [3].
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© The SE loop is essentially a narrow band resonator
B/ equipped with positive feedback. The loop contains the res-
@ onator, a near-linear amplifier, an adjustable phase shifter,
5 and a limiter and attenuator to control the amplitude.
« The resonator has loaded quality factor and time constant
% Qc and 1, respectively. The loop phase is initially adjusted
O to be 2nm at the resonance frequency wc with n integer. The
2 shifter then introduces an addition phase ®@L. The loop re-
o sponds by oscillating at the SE frequency o, glven by:
2Tan[0, Jw[t] = —7(wf — w[t]?)
5 Here it is assumed that o. has already the static LFD in-
o cluded and compensated.

In contra-distinction to generator driven (GD), it is im-
2 portant to understand that O is the “cause” and o is the
é “effect”. In SE mode, the excitation amplitude is self-sta-
"’ bilized. Following Delayen, we begin by considering the
28 stability of the SE oscillator with no control loops. Let v[t]
z and vg[t] be the cavity voltage and equivalent generator

erms o
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E voltage. They are governed by:

g 2v'[t 2v,'[t
4 w?v[t] p, v'[t] = —2 i
2 T T

=

o

where primes denote time derivatives.
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We write the voltages in the following forms:
{v = eV [t], v, = e'oL U [t], w[t] = D'[t]}
with the steady state (denoted subscript 0) conditions:
Voo = Sec[6, ]V,
We now introduce deviations from the steady state,
{v[t] > vo + 8V[t],V,[t] - Vg0 + 8Vg[tl}
{w¢ = (Bwp+ w)?, w[t] > dw[t] + wlt]}
where dop is dynamic LFD.

We suppose the EM resonator to be coupled to a mechan-
ical mode (of the RF cavity) having quality factor Q and
resonance frequency Q. This mode gives a static LFD
Aw, = —kuVO2 < 0. The normalized (dimensionless) cou-
pling constant is K = 2tk,V§ > 0.

We linearize the equations of motion, and take the La-
place transform w.r.t. frequency-like variable s. We intro-
duce the vector u = {a,, 8w, a4, Swp} where av and ag are
amplitude modulation indices. The system matrix is P =

1+s T, 524“ -1 )
o
2
-5 52—‘& +Tan[e,] t. -Tan[e.] -
w w
0 0 1 0
2
LR (%] (7] 1+5—2+i
Tc Q QQ

and the condition P.u=0 leads to the characteristic determi-
nant and polynomial in s. Delayen discards the term in
Tan[®)/® as being small. This is not self-consistent, be-
cause in the following we shall see that Tan[®] may be as
large as 4Q. which is in principle very large for an SRF
cavity. Nevertheless, we set Tan[®]/w=0.

Depending on precisely which terms in s we retain, the
polynomial may be a monomial, cubic, quartic or quantic.
We present the conditions arising from each of these
choices. All the terms {—s/w, —(s"2 1)/2w,st/2w} are
small; if they are all neglected, then the coupling to the me-
chanical mode and to Tan[®] both disappear leading to a
damped cavity response 1 + st = 0. If we retain only the
small term —s/w, column 1 row 2, the result is the same.

Cubic

If we retain only the small term st/(2w), row 1 col 2,
the result is a cubic a, + sa; + s2a, + s3a;. The term ao
does not contain Ki. or Tan[®], so there is no monotonic
instability. {a1, a2, a3} all contain Tan[®], but only ai con-
tains Kv. Sufficient conditions for all coefficients ai>0 and

Routh determinants RH;j >0 are Tan[®] <4Qc and K; < 622_3
and KL <<4Qe.

Quartic

If we retain only the two small terms {—s/w, st/2w} the
resultis a quartic ay + sa, + s%a, + s3a; + s*a,. {ao, a4}
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do not contain K. or Tan[®], so there is no monotonic in-

stability. {ai1, a2, a3} all contain Tan[®], but only a1 contains

K. Sufficient condition for all a;>0 is Tan[@] < 4Q..
Sufficient condition for all RH>0 is K; < Q% Alterna-

tively, Tan[@] <3Qc. and K; < 622_3 is sufficient. Generally:

{2Q%wNK,} < 8wNQ. + 4Q(w? + 402%Q?%) — 20(w
+ 4Q0Q,)Tan[6,] + QN2Tan[O,]?
Quintic
Retaining all small terms leads to a quintic. This case is
treated by Delayen. The coefficients are:
{a, = 4Qw?0?,a, = 2Q + 10, a5 = Qt}
a; = 2w Qw(1l + Q1) — QNK, — QNTan[6,])
a, = 41w 0 + 2Q(2w? + N?) — 2wNTan[O, ]
a; = 20 + Qt(4w? + N?) — 2QwTan[6O, ]
Sufficient condition for all a;>0 is Tan[®] < 4Q..

When Tan[®] =0, RH3 & RHa >0 automatically, leaving
RHs to determine stability. Delayen gives

K < 210+ 20 20w 2w 4 4QwQ,
LSOt o T 0t 0n Tt T Qw v 200,
More accurately, we find:
2w  2Qtw(4Q +t0N)
KL<2‘[w+QQ 20+ 2
2w 2QwQ.(2Qw + N
L2040 2000200 + 00,
QQ (Quw +00,)

The expressions for limiting Kv agree to leading order.
Consider now non-zero loop phase, ®L # 0. Sufficient
condition for RH; & RHs4 >0 is Tan[®] < 2Q.. The fifth
Routh determinant, RHs, is the most challenging. When
Tan[®] < 2Q., a sufficient condition is K; < Q.. This cor-

w

responds to a very large static LFD of Aw, = — T

Two points are noted: (i) in contra-distinction to GD, the
microphonic does not un-couple when Tan[®]=0; (ii) ao
does not contain Kv so there is no monotonic instability.

The general conclusion is that SE-oscillator without con-
trol loops will not encounter a ponderomotive instability.
Moreover, the stability limits that derive from the small
terms {—s/w,—(s"2 1) /2w, st/2w} are so far away that
we may as well neglect them all, and recover the matrix P=

1+st O -1 0
Tan[@,] © -—Tan[@,] -7
0 0 1 0
Kooy 0 1+ s +—
T 027 Q0

PHASE & AMPLITUDE LOCK

We must lock our SE oscillator to an external reference
for the frequency and amplitude. Following Delayen, the
loop is modified to include quadrature control, B[t]. The
equivalent generator voltage becomes:

v, = e OL+elT(1 +iB[7])V, [1]
The dynamical equations for the resonator become:
tw?V[t] — tV[r|w[T]? =
= —2B([r]Cos[O, ]w[T]V;[7]
— 2Sin[0, Jw[7]V;[7]
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Vtlw[t] + tw[]V'[r] =
= Cos[0,Jw[r]V, [1]
= B[z]Sin[0, ]w[7]V;[7]

Here o[t] is the loop frequency when B is present. In the
steady state it is equal to the reference frequency defined
by 2Tan[¥]w([7] = +1(w? — w[7]?). Note the sign is re-
versed compared with Delayen; we chose the convention
to agree with the generator driven case following Schulze
[4]. We introduce the static values:

By, = —Tan[0 + ¥] and Vy, = Cos[¥ + 0, ]Sec[¥]V,

We then consider small perturbations in the dynamical
variables, linearize about the steady state, and Laplace
transform. There is a new state vector
u = {a,, Sw, ag, 6B, Swp} and system matrix P =

i 1+st @ -1 Cos [0+ T] Sec[T] Sin[@] 0
-Tan[Z] t Tan[Z] -Cos[®@] Cos[® + T] Sec[T] -t
0 Q0 1 0 0
%] 0 0 1 0

K g ) 1452 4 s |

it wo' Qwo /

High Gain Phase Loop

The SE oscillator with a high gain phase loop, locked to
an external frequency is the analogue of the GD case. For
simplicity, we take the feedback to be a perfect integrator
of the frequency deviation. The matrix elements P[row,col]
=P[4,2]=P[4,5]=F/s where F>0 is constant.

In the absence of the microphonic (Kv = 0), the charac-
teristic is quadratic. Examination of the coefficients a
show the conditions {® - —¥,0 - ¥,0 - /2 -V} to
be good, poor, and disastrous, respectively.

When K >0, there is a quartic in s. For example, the DC
term: a, = FQN%Cos[¥ + 6,]Sec[¥]

(Cos[O,] + Sin[@,](2K, — Tan[¥]))

In the regime of interest, {Cos[@ + ¥] > 0, Cos[@] >
03, but this still leaves four combinations:

e Both below resonance {Tan[¥] > 0,Sin[@] < 0}

e Both above resonance {Tan[¥] < 0, Sin[®] > 0}

¢ One low, one high {Tan[¥] > 0, Sin[@] > 0}

e One high, one low {Tan[¥] < 0, Sin[@] < 0}.

Low/low gives the monotonic instability. High/high
gives the oscillatory instability. The mixed cases may give
instabilities also. For simplicity and brevity, we present
only the low/low and high/high cases; but experimentalists
beware the mixed cases!

Monotonic instability (low/low)From the coefficient
ap>0, we find the threshold:

2K; < (—Cot[0,] + Tan[¥])
Substituting @ — —¥, yields the GD threshold:
K, < Csc[2¥]
All other a>0 automatically.

Oscillatory instability (high/high) All Routh de-
terminants except RH4 are greater than zero. RH4>0 is
challenging to analyse. RHa is linear in Kv, so we can write
RH4 = kotkixKr where kj are functions of F and the EM
and MM resonator parameters. Kv is then the quotient -
ko/ki. We expand this in inverse powers of F>>1.

Let p = 2. The threshold leading terms are:
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(Q +p+Qp*)Cot[6,] (2Q + p)Tan[¥]
2Q%p 2Q%p
N Tan[¥]?Tan[6), ]

- 2Qp
(Delayen gives a similar expression, but has the wrong sign
for the term linear in Tan[¥].) The next to leading order
terms are:

(Q + p + Qp?)Cos[W]Csc[O,]Sec[¥ + 6,]

2FQ3
N (—Q — p + 2Q%p)Sec[O,]Sec[¥ + 6,]Sin[¥]
2FQ3

The special case @ — —Y¥ can be treated exactly.

{—=2Qp(Q + FQ + p)*K, Tan[¥]} <
Q+p+Qp*)(F?Q+Fp+Qp*) + F(FQQ +p)+p(Q+p
—2Q%p) + FQ?Sec[¥]?)Tan[¥]?

PHASE & AMPLITUDE LOOPS

For simplicity, we take the amplitude feedback to be pure
proportional to av. The matrix elements P[4,2]=P[4,5] =F/s
2 and P[row,col] =P[3,1] =A where A>0 is constant. This re-
E sults in a quartic characteristic equation.

g Tan[@L] =0

maintain attribution to the author(s), title of the work, publisher, and D
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Let us point out immediately that setting ®L identically
© zero, has the effect that all coefficients ai and all Routh de-
.2 terminants RH; are automatically greater than zero pro-
2 vided A, F, Q, p=tQ all >0. In such case Bo= -Tan[?]. In
% this special, but important, case Ki. and Tan[V'] are absent
2 from all a; & RH;. (This happens because we omitted the
Z small couplings {—s/w, —(s"2 1) /2w, sT/2w}.) So OL=0
5 is the ideal regime; but inevitably there are phase and/or
§ detuning errors, so we move toward the general case.

S Tun[O1] +Tan[?] =0
The next most simple case is ® +¥=0, or By=0. This con-
= dition means that the setpoint for the feedback is zero, but
« whatever signal arrives it must be added in quadrature.
In this case, we need consider the stability only as a func-
O tion of ¥, which is related to the difference of reference
o and SE-oscillation frequencies.
Monotonic condition The term a0 may change
» sign when Tan[¥]>0, leading to the threshold: 0 < K; <
5 (1 + A)Csc[2¥]. So amplitude feedback has a significant
o beneficial effect for operation below resonance.
Oscillatory condition All other ai and RH; are au-
tomatically >0, except for

n of th
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of the C

m

RH4=

(A+ F)(Ap + (A* + pP)Q)(Fp + (F? +p*)Q) +

FTan[¥](2Qp((A + F)Q + p)?K, + A(A + F)((A
+F)Qp + p® + Q*(AF — 2p?)
+ AFQ?Sec[¥]?)Tan[¥])

which may become negative when Tan[¥]<0. Here, for
brevity, A stands in place of (A+1).
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General Case

There are two parameters (0 ,¥) leading to four combi-
nations: low-low, high-high, low-high, high-low as above.
It simplifies matters to stipulate Cos[® + ¥]Sec[¥] > 0,
so that cavity and generator V and V; have the same sign.
First we find conditions for ai>0:

Low-low High-high Low-high High-low
a0 X ~ mixed mixed
a N Cot®@>Tan¥ Cot@<Tan¥
a \ Cot®@>Tan¥ Cot@<Tan¥
n v v v

Monotonic condition In particular, below reso-
nance, Tan[¥] > 0& Tan[@] < 0 we find the threshold
condition:

—2K; < (1 + A)Cos[¥ + 6,]Csc[O,]Sec[¥]
But generally it is more complicated, see Fig.1, which
shows also the mixed cases.

ay(W.0.K =2.A=F=1.Q=40} 8y(¥.0.K;=Q=40 A=F=1)

Figure 1: regions ac>0 shown white, ao <0 coloured. Ab-
scissa ¥, ordinate ®. Left/right = low/high Lorentz cou-
pling. The classical monotonic regime is the lower right
quadrant.

Oscillatory condition Now we consider the
Routh determinants, only above and below resonance:
RH3>0 always, but RH4 may change sign and the paramet-
ric behaviour is complicated. The asymptotic expansion
(1/F —0) used above does not give simple results when
A>0, because the felicitous cancellations do not occur. The
working is lengthy and reveals that the meaning of “very
large gains” is F>Q? and A>Q? in order to cover the range
of p=[1, Ql.

Although Mathematica® can calculate RH4 exactly, to
obtain an expression short enough for this paper we must
introduce some approximations. In the region |®|< n/4 and
|¥|<n/4, Cos[W + O, ]Sec[¥] has average value 0.9, so we
replace the matrix elements as P[1,4]=Tan[®] and P[2,4] =
-1. RH4>0 yields the upper limit on LFD detuning:

{2FpQ(p + (A + F)Q)’K,} <
(A+ F)((Ap + Q(A% + p*))(Fp + Q(F? + p?))Cot[ 0, ]
+AFTan[¥](—(A + F)Qp — p? + 2Q*(—AF + p?)
+ AFQ?Tan[¥]Tan[6,]))

CONCLUSION

Following Delayen, we have rederived, corrected, and
extended the criteria for avoiding ponderomotive instabili-
ties for a self-excited cavity operating with phase and am-
plitude loops. The criteria are rather similar to those of a
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generator driven RF cavity, particularly when ®+¥=0. We
draw attention to the mixed cases where simplistic tuning
above or below resonance may be insufficient for stability.
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