
A GENERIC SOFTWARE PLATFORM FOR RAPID PROTOTYPING OF
ONLINE CONTROL ALGORITHMS

C. J. R. Duncan†, M. B. Andorf, V. Khachatryan, C. Gulliford,
J. M. Maxson, D. L. Rubin, I. V. Bazarov, Cornell University, Ithaca, NY, USA

Abstract
Algorithmic control of accelerators is an active area of

research that promises significant improvements in machine

performance. To facilitate rapid algorithm prototyping, we

have developed a generic interface between accelerator con-

trols, beam physics modelling software andmodern scripting

languages. The work-flow of a project using this interface

begins with testing algorithms of choice offline in simulation.

After off-line testing, the same code can be deployed on real

machines via the Experimental Physics and Industrial Con-

trol System (EPICS) API. We include noise in our simula-

tions in order to mimic realistic accelerator behaviour and to

evaluate robustness of algorithms to experimental uncertain-

ties and long-term drifts. The results of test cases of using

this framework are presented, including emittance tuning

of the Cornell Electron Storage Ring (CESR), correction of

diurnal drift in CESR steering and orbit correction on CESR

and the Cornell-BNL ERL Test Accelerator (CBETA).

INTRODUCTION
Particle accelerators are a natural application domain for

software automation. But the lack of a community standard

interface between algorithm code, machine controls and

simulation software impedes collaboration between acceler-

ator scientists at different facilities, as well as collaboration

between accelerator and computer scientists. These frus-

trations can be eliminated by introducing in software an

abstraction layer that presents a consistent interface to con-
trol code, consistent across different machines and consistent

across machines and simulation software. In this proceed-

ing, we describe two accelerator facilities at Cornell that

make use of two different control systems. We then sketch

the software components of a prototype abstraction layer.

We report proof-of-concept results showing how, through

our abstraction layer, (i) control code written for different

accelerators can be shared, and (ii) third-party optimization

algorithms can be rapidly tested in simulation. We end by

describing a method for simulating noisy drift observed in

CESR orbit data.

ACCELERATOR FACILITIES
The Cornell Electron Storage Ring (CESR) is the source

for the Cornell High Energy Synchroton Source (CHESS) x-

ray user facility. CESR comprises hundreds of independently

powered electromagnetic elements and thousands of sensors

that are controlled and monitored by a centralized Multi-

† cjd257@cornell.edu

Figure 1: Schematic of interface software components. On

the output side, EPICS Channel Access clients put com-

mands on a work-queue that is managed by the thin software

input-output controller (IOC). The IOC consumes the queue

by translating and then passing commands to the back-end

control and simulation software, which run as a separate

processes. On the input side, a timer periodically polls the

back-end for data, which triggers execution of simulation

code. The simulation trigger is vetoed by a register ("stale

switch") if and only if the simulation parameters are un-

changed.

Port Memory device (MPM). The components of the MPM

system are schematized in Fig. 2.

The Cornell-Brookhaven ERL Test Accelerator (CBETA)

is a superconducting RF multi-turn energy recovery linac.

Control and monitoring is handled by a distributed network

of dozens of EPICS Input-Output Controllers (IOCs).

SOFTWARE COMPONENTS
Our abstraction layer interfaces with user code via the

Channel Access (CA) network protocol, a component of

EPICS. Client CA libraries exist for Python (pyepics), and
Matlab (labCA). In our implementation, an EPICS IOC runs
a CA server that handles the details of communicating client

commands to control system and simulation software, as

shown in Fig. 1. Since EPICS is designed to perform the

same functions as the legacy control software, the details of

the implementation consist in translating equivalent func-

tionality, together with data book-keeping. Client commands

to change command values ("puts") are placed by the IOC on

a task-queue. Items on the queue are consumed by a worker

thread that is connected to the legacy control system as a

10th Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-THPRB100

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects
T33 Online Modeling and Software Tools

THPRB100
4063

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

Figure 2: Block diagram showing how our EPICS interface

integrates with legacy CESR control and simulation soft-

ware: clockwise from bottom, user code interacts with both

machine and simulation by setting and getting Process Vari-

ables (PVs) through the network Channel Access protocol; a

thin Input-Output Controller running on a Linux workstation

acts as the client of a VMEbus interface to the Multi-Port

Memory (MPM) that aggregates machine command and

sensor data.

client, using a look-up table to execute the equivalent legacy

command.

CESR and CBETA beamlines are simulated using two

codebases: (a) the BMAD library in compiled code and in-
teractively in the command-line interface Tao [1]; (b) for
simulating space-charge effects, the General Particle Tracer

(GPT). In our implementation, an EPICS IOC hides simu-

lation software from user code. Simulation parameters are

mapped to IOC device inputs and simulation results to IOC

device outputs. By default the IOC schedules execution of

simulation code automatically. For automatic execution to

be responsive to user input, the IOCmust infer user intention.

For example, a user might put new values to 100 steering

magnets consecutively and then attempt to get the resulting

orbit. The server infers that the sequence input of commands

has terminated at the 100th value by introducing latency into

the scheduling of the simulation, as follows. When the IOC

receives a put, the IOC restarts a count-down timer, execut-

ing simulation code once the timer expires. In our example,

because successive puts restart the count-down, the timer

only expires after the 100th put is made. The timer duration

is set to the time-cost of one simulation run.

CONTROL ALGORITHMS
Orbit Correction
Our aim in this section is to demonstrate our proposed

work-flow, showing that a script tested in simulation via our

interface can then be deployed on the real machine. The first

example algorithm sets the strength of corrector dipoles to

center the particle orbit on a reference trajectory. Suppose

we have beam position monitors (bpms) at n positions in the

beam-line and let xi be the n corresponding observed hori-
zontal (vertical) coordinates of the beam. Suppose further

we have m horizontal (vertical) correctors and let θi be the
corrector strengths in radians. We aim to center the beam at

coordinates x̃i and thus seek a change to the correctors Δθi
that solves the linear system,

xi +
∑

j

Ri jΔθ j = x̃i; Ri j :=
∂xi
∂θ j

(1)

The matrix R admits a singular value decomposition R =
USV† and a solution to (1) is,

Δθi =

min{n,m}∑

j=1

n∑

k=1

Vi jS−1
j j U†

jk
(x̃k − xk) (2)

Using our interface, we implemented the algorithm for

CESR in Python and for CBETA in Matlab, with results

shown in Fig. 3.

Figure 3: (a) Matlab script interfaces with Tao simulation of
a CBETA lattice perturbed from design parameters, demon-

strating the orbit correction algorithm Eq. (2). Ten traces per

panel show different beam energies making one turn of the

ERL racetrack uncorrected lattice; (b) converged result of

applying the design response matrix iteratively; (c) Python

script interfaces with CESR controls to demonstrate Eq. 2.

Data are taken from bpmmeasurements, the response matrix

is obtained from BMAD simulation.

Multi-Objective Optimization
A multi-objective optimization algorithm finds the set

of optimal trade-offs between competing scalar valued ob-

jective functions (trade-off frontier). Such trade-offs arise
correcting vertical orbit errors in CESR because correction

10th Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-THPRB100

THPRB100
4064

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects
T33 Online Modeling and Software Tools

magnets introduce unwanted vertical dispersion. Magnet

strengths represent an optimal trade-off if any further reduc-

tion in orbit error necessarily leads to a growth in disper-

sion or vice-versa. Genetic algorithms are suited to finding

trade-off frontiers. Platypus is an open-source Python ge-
netic algorithm package [2]. We give Platypus an objective

function using our abstraction layer, letting this third-party

software drive a BMAD simulation with the results shown

in Fig. 4.

Figure 4: Trade-off frontiers in the space of orbit and dis-

persion for a misaligned lattice, as found by the Platypus

genetic algorithm package driving a BMAD simulation via

our interface.

SIMULATING NOISE AND DRIFT
Algorithmic control must reckon with both measurement

uncertainties and machine drifts. It is therefore desirable

to incorporate both these effects in simulation. Time series

data collected at CESR shows random oscillations in kicker

strength on a timescale of several minutes. We fit a multi-

variate Ornstein-Ulenhbeck process to this data, a model

defined by the stochastic difference equation [3]:

xi(tk+1) = xi(tk) − λi jΔxjΔt + σi j
√
Δtξk . (3)

Here, σi j is a covariance matrix and the ξk are i.i.d. Gaus-
sian random variables with mean zero and unit variance. A

comparison of the measured and simulated time series is

shown in Fig. 5. Kicker strengths are inferred from orbit

measurements by reduced-chi-squared fits of an analytic,

linear model, in which the fit parameters are the number of

kickers n, the kicker locations (s, i) and kicker strengths θi:

x(s) =
n∑

i

θi

√
βsβs,i

2 sin(πq) cos(πq − φ(x) + φi), (4)

Simulating noise makes possible a self-consistency test of

this inference procedure, with results shown in Fig. 5.

Figure 5: (a) typical kicker strength time series obtained

from CESR orbit data; (b) kicker strength fluctuations sim-

ulated as an Ornstein-Ulenhbeck process, Eq. (3); (c) his-

togram of drifting kicker locations as inferred from fits to

simulated data.

CONCLUSION
The value of the larger accelerator community developing

a standard semantics for accelerator control code is clear. We

have shown how such semantics could easily be implemented

through an abstraction layer that leaves in place existing

facility-specific control systems.

ACKNOWLEDGEMENTS
This work was upported by the US Department of Energy

through grant number DE-SC 0013571. C.J.R.D., M.B.A.,

J.M.M. and I.V.B. partially supported by the US National

Science Foundation under Award OIA-1549132, the Center

for Bright Beams.

REFERENCES
[1] D. Sagan, “Bmad: A relativistic charged particle simulation

library”, Nucl. Instr. And Meth. A 558 (2006) 356

[2] Platypus,

https://github.com/Project-Platypus/Platypus

[3] R. Sing, D. Ghosh, R. Adhikari, “Fast Bayesian inference of
the multvariate Ornstein-Uhlenbeck process”, PRE 98 (2018)
012136.

10th Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-THPRB100

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects
T33 Online Modeling and Software Tools

THPRB100
4065

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

