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Abstract

In the design of a multi-bend achromat (MBA) lattice for

a diffraction-limited storage ring, there are usually many

magnet parameters to be optimized and some stringent con-

straints to be satisfied. For example, to cancel out nonlinear

dynamics effects, the phase advances between some sections

are generally required to be set to certain values in the lat-

tice design. For better designing a MBA lattice using an

evolutionary algorithm, the handling of constraints will be

important, because it is very hard to satisfy the constraints

for most or even all of solutions in the early generations of the

algorithm. This paper will first describe some methods for

handling constraints, which are then applied to designing a

hybrid 7BA lattice. The comparison of these methods shows

that better lattice solutions can be obtained by including

constraints into objective functions.

INTRODUCTION

Since the electron beam emittance of a storage ring light

source scales inversely with the third power of the number

of bends, multi-bend achromat (MBA) lattices have been

adopted in designing diffraction-limited storage rings (DL-

SRs). Compared to the double-bend achromat (DBA) lattice

used in most of the third-generation synchrotron sources, the

MBA lattice is more complicated with many magnets em-

ployed. A lattice with an ultra-low emittance will generally

face very serious nonlinear dynamics effects, and thus non-

linear cancellation schemes are usually required, where the

phase advances between some sections are limited to certain

values. So in the MBA lattice design of a DLSR, there are

usually many parameters of magnets to be optimized and

some stringent constraints to be satisfied.

Generally, the lattice design of a storage ring is a con-

strained multi-objective optimization problem (CMOP),

which can be solved using evolutionary algorithms such

as genetic algorithm [1] and particle swarm optimization

(PSO) [2, 3]. In the design of a DBA lattice with an evolu-

tionary algorithm, it is often in the first few generations that

most of solutions satisfy the constraints. While for a MBA

lattice, only some or even none of solutions can satisfy the

constraints in the early generations, due to many decision

variables and some stringent constraints. In the latter case,

the handling of constraints in the algorithm will play an

important role in searching for optimal solutions.

In this paper, four methods for handling constraints will

be introduced and combined with multi-objective PSO

(MOPSO). Then they are applied to designing a hybrid 7BA
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lattice [4] that has the same energy as the Hefei Advanced

Light Source (HALS) [5], and a comparison between them

is made.

CONSTRAINT HANDLING METHODS

A CMOP can be defined as follows:

minimize: F(x) = ( f1(x), f2(x), . . . , fm(x)) ;

subject to: gj(x) ≥ 0, j = 1, 2, . . . , J;

hk(x) = 0, k = 1, 2, . . . ,K;

xL
i ≤ xi ≤ xUi , i = 1, 2, . . . , n;

(1)

where m is the number of objective functions, n is the num-

ber of decision variables, J is the number of inequality con-

straints, K is the number of equality constraints, xi
L and xi

U

are the lower and upper limits of the i-th decision variable.

If not considering the constraints, a solution xi is said to

dominate another solution xj , if the following conditions

hold:

• xi is no worse than xj in all objectives;

• xi is strictly better than xj in at least one objective.

To handle the constraints, the violation degree is introduced,

defined as the sum of the squares of the constraint violation

values:

H(x) =

J∑

j=1

[min{0, gj(x)}]
2
+

K∑

k=1

[hk(x)]
2
, (2)

where all constraints are normalized before computing the

constraint violations. Now we will present four constraint

handling methods.

Method 1: Biasing Feasible over Infeasible Solu-

tions (1)

The first method is to change Pareto dominance to

constraint-Pareto dominance [6] by keeping the objective

function unchanged. Assuming minimization, a solution xi
constrain-dominates another solution xj if:

• xi is feasible and xj is infeasible;

• xi and xj are both infeasible, but xi has a smaller con-

straint violation H(x);

• xi and xj are both feasible and xi Pareto-dominantes

xj .

Method 2: Biasing Feasible over Infeasible Solu-

tions (2)

In the second method, a solution xi is said to constraint-

dominate another solution xj if [7]:

• xi is feasible and xj is infeasible;
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• xi and xj are both infeasible, but xi is no worse than xj
in all constraints and xi is strictly better than xj in at

least one constraint;

• xi and xj are both feasible and xi Pareto-dominantes

xj .

This method is very similar to the first method, except in

comparing infeasible solutions.

Method 3: Adding Constraints to Each Objective

The third method is a penalty function method, where the

penalty function, i.e. the constraint violation H(x), is added

to each objective function, forming a new objective function

G(x, μ):

G(x, μ) = F(x) + μH(x), (3)

with μ being the penalty coefficient. The performance of this

method depends largely on the setting of the penalty coeffi-

cient, and in practice the value of the penalty coefficient is

difficult to grasp. In this paper, we use a strictly incremental

positive sequence {μk} with a small initial value.

Method 4: Treating Constraints as an Objective

The last method is to treat the constraint violation H(x)

as an additional objective. Therefore, a constrained problem

with m objective functions, J inequality constraints and K

equality constraints becomes an unconstrained problem with

m + 1 objective functions.

COMPARISON OF METHODS

We will combine the four constraint handling methods

with MOPSO, and use them to design a DLSR, composed of

24 identical hybrid-7BA lattice cells. The designed DLSR

has an energy of 2.4 GeV, the same as HALS, and a cir-

cumference of 576 m. In the lattice design, there are more

than 20 decision variables, including dipole and quadrupole

field strengths of various magnet elements and their posi-

tions. The optimization objectives are the natural emittance

and the sum of the integral strengths of three families of

sextupoles, |Isum | = |ISD1 | + |ISF | + |ISD2 |. To calculate

the integral strengths, the sextupoles are first treated as a

combination of (SF, SD1) and (SF, SD2). The defocusing

sextupole SD1 is close to the first bend and SD2 close to the

second. Then the pair (SF, SD1) is assumed to contribute

2/3 of chromaticity correction, and (SF, SD2) contributes

1/3, because we found that a larger contribution from (SF,

SD1) could give a better nonlinear dynamics performance.

The constraints are listed as follows:

• the transverse tunes: (57.0, 20.2)± 0.2;

• the phase advances between two dispersion bumps

(Δμx,Δμy)/2π : (1.5, 0.5) ± 0.01;

• the maximum beta functions < 25 m;

• the dispersion function at the long straight section >

-0.005 m.

The second constraint is to make a -I transformation be-

tween the dispersion bumps, so that most of nonlinear effects

caused by the sextupoles can be cancelled out.

For each method, a MOPSO algorithm with a population

size of 5000 was run for 100 generations. The optimized

Pareto fronts with the four methods are shown in Fig. 1.

We can see that the Pareto fronts of the third and fourth

methods present both better values and better distributions

of objective functions than the first and second methods.

Fig. 2 shows the iterative processes of these optimizations.

It can be seen that the third method iterates faster than the

other three methods, and the third and fourth methods have

shown better distributions of objective functions in early

generations. So in this lattice design, the methods based on

including constraints into objective functions are better than

those based on biasing feasible over infeasible solutions.
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Figure 1: Comparison of the Pareto fronts optimized by the

four methods.
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Figure 2: Comparison of the objective functions of solutions

for the four methods at the 20th and 50th generations.

In order to better compare the four constraint handling

methods in different cases of constraints, we also designed

the lattice with only two relaxed constraints:

• the phase advances (Δμx,Δμy)/2π : (1.5, 0.5) ± 0.2;

• the maximum beta functions < 40 m.
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The decision variables and objective functions are the same

as those in the previous design. The optimized Pareto fronts

are shown in Fig. 3. It is obvious that the four methods can

obtain almost the same results when the constraints are very

relaxed. By comparing the two designs, it can be known that

when the constraints become stringent, the performance of

the third and fourth method will be better than the other two

methods.
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Figure 3: Pareto fronts optimized by the four methods in the

case with relaxed constraints.

One lattice was selected from the Pareto front obtained

with the third method as shown in Fig. 1, which has a natural

emittance of 65 pm·rad. The linear optical functions and

magnet layout of the lattice are shown in Fig. 4. Three fami-

lies of sextupoles and one family of octupole were used in

the nonlinear optimization. The optimized dynamic aperture

(DA) and tune shifts with momentum are shown in Fig. 5

and Fig. 6. We can see that the DA and dynamic momentum

aperture at the long straight section are large.
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Figure 4: Linear optical functions and magnet layout of the

designed hybrid 7BA lattice.

CONCLUSION

For better designing MBA lattices for DLSRs using

evolutionary algorithms, four constraint handling methods

have been studied. The four methods were combined with

MOPSO and applied to designing a hybrid 7BA lattice. It

was shown that for the lattice design with stringent con-

straints, the methods based on including constraints into

objective functions could find better lattice solutions than

those based on biasing feasible over infeasible solutions. In

this study, a hybrid 7BA lattice solution with a natural emit-
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Figure 5: Optimized DA, tracked for 1024 turns.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
 [%]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
un

e

tune x
tune y

Figure 6: Momentum dependent tune footprints.

tance of 65 pm·rad at 2.4 GeV was selected, and its DA and

dynamic momentum aperture were large.
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