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Abstract

A robust lattice design for a 500 m circ. tunnel, as an-
other step towards a “Diffraction Limited” Storage Ring,
based on first principles and best practices, is presented
(e.g. g,~A/4m =8pm-rad@1A =12.4keV; and a
beam energy of ~3 GeV). In other words, exploratory, stra-
tegic work. As the aviation concept: “To stay ahead of the
power curve”.

INTRODUCTION

MAX IV has been the first practical and robust imple-
mentation of a 7-Bend-Achromat [1,2], i.e., “Predictable
Results” [3]; which begun operation 2016. In particular, it
has introduced a paradigm shift in the design philosophy
for the “Engineering-Science” in the quest for a Diffraction
Limited Storage Ring (DLSR) [4]. Besides, it’s construc-
tion (by necessity) has been innovative and cost effective
(e.g. outsourcing by built-to-Print, concrete girders, etc.).

Similarly, SLS-2 [5,6] has introduced a systematic
method for controlling the linear optics beyond some
20 years of TME inspired paper designs; by introducing re-
verse bends [7,8] to disentangle dispersion and focusing,
which enables longitudinal gradient bends to efficiently re-
duce the emittance.

While the conceptual design for the former initially has
been met by a naysayer or two, operating facilities now ei-
ther is [9], or have plans to, upgrade; by a “Rip-&-Replace”
[5,10-13]. In industry the phenomenon is known as: “Dis-
ruptive Technology”.

A key insight for the design of and R&D for MAX IV
has been miniaturization; enabled by leveraging the Engi-
neering-Science know-how provided by: MAX-I -> MAX-
11 -> MAX-IIIL.

Similarly, since permanent magnets are well understood
for insertion devices, i.e., predictable results, they now pro-
vide another opportunity (or risk); to “Push the envelope”
further, see Fig. 1.

PRELIMINARY CONSIDERATIONS
Preliminary Concept: 19-BA

The basic requirements are summarized in Table 1. By
numerical simulations and optimizations of the number of
unit cells and cell tune, a 19-BA with v = [4/16,1/16]
and a natural emittance of &, = 16 pm-rad (ignoring the
impact of IBS) was obtained as a baseline lattice for a pre-
liminary concept [14], see Table 2 and Figs. 2 and 3.

*Exploratory strategic work conducted at MAX IV winter 2016-2017.
T johan.bengtsson@diamond.ac.uk.
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Figure 3: Horizontal linear dispersion for 19-BA.
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Figure 1: The Quest for Higher Brightness [14].
Table 1: Requirements

Energy ~3
Hor/Ver Emittance [pm-rad]: Round Beam ~10
On-Momentum Dynamic Aperture [mm)| ~2 mm
Off-Momentum Dynamic Aperture ~3%
Touschek Life Time |hrs| “5hrs
Momentum Spread <1x1077
Magnet Reference Radius R [mm] 5
Table 2: Global Parameters for 19-BA
Circumference [m] 527.7
Energy [GeV] 3
Horizontal Emittance [pm-rad| 16
Normalized phase advance i [101.2,27.32]
Linar Chromaticity [—100.2, —126.0]
Linear momentum Compaction 5.3 % 1072
Momentum Spread [%)] 0.092
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Figure 2: Linear optics for 19-BA.
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D

gA 3" Order Achromat: 18-BA

% However, the resonance 4v, =1 is systematically
édriven for the 19-BA structure. A 3™ order achromat
2[15,16] can be obtained by changing to Vg =
e

= [5/15,1/15]. However, the increase of the horizontal cell
% tune leads to an excessive increase of the horizontal linear
S chromaticity. So, instead, one may consider Ve =
©[4/15,1/15]; by reducing the number of cells to a 18-BA,
E see Table 3 and Figs. 4 and 5.

Table 3: Global Parameters for 18-BA

he

Circumnference [m| 260
Energy |GeV] 3
Horizontal Emittance [pm-rad] 18
Normalized phase advance o [102.2, 68.18]
Linar Chromaticity [—124.8, —118.2]
Linear momentum Compaction 4.4 % 10—
Momentum Spread |%)] 0.094
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Figure 4: Linear optics for 18-BA.
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Figure 5: Horizontal linear dispersion for 18-BA.

BEAM DYNAMICS BENCHMARK

Our beam dynamics benchmark comprises of:

e  Tune footprint, see Fig. 6.

e On and off-momentum Dynamic Aperture (DA)
for Bare Lattice, see Fig. 7.

e  Onand off-momentum DA for the real lattice (i.e.,
with mechanical mis-alignments, magnetic field
errors, control of closed orbit, and beta-beat), see
Figs. 8 and 9.

e On and off-momentum frequency maps for real
lattice, see Figs. 10 through 13.

e “Touschek Tracking”, see Fig. 14.

e Longitudinal phase space, see Fig. 15.

from which it is clear that the design is robust [17].
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Figure 6: Tune footprint for 18-BA.
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Figure 7: Dynamic aperture for 18-BA; bare lattice.
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Figure 8: Dynamic aperture for 18-BA; real lattice.
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Figure 9: Off-momentum dynamic aperture for 18-BA; real
lattice.
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Figure 10: Tune footprint for 18-BA; real lattice.
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Figure 11: Diffusion map for 18-BA; real lattice.
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Figure 12: Off-momentum tune footprint for 18-BA; real
lattice.
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Figure 13: Off-momentum diffusion map for 18-BA; real
lattice.
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Figure 14: “Touschek tracking” for 18-BA; real lattice.
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Figure 15: Longitudinal dynamics for 18-BA.
SYSTEMATIC CONTROL OF H;

Control of the quadratic Hamiltonian, H,, i.e., the linear
optics, can be refined by introducing longitudinal gradient
dipoles and reverse bends [7,8]. The result is summarized
in Table 4 and Fig. 16.

Table 4: Global Parameters for 8-BA with Longitudinal
Gradient Dipoles and Reverse Bends

Bim)

Circnmference [m| 533.6
Energy [GeV] 3
Horizontal Emittance [pm-rad] 23
Normalize d phase advance [73.94,27.82]
Linar Chromaticty [—179.0, —65.98.2]
Linear momentum Compaction -39 =107
Momentum Spread |%)] 0.089
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Figure 16: Linear optics and horizontal linear dispersion
for 18-BA.

CONCLUSIONS

A robust lattice design, based on first principles and best
practices, for a 500 m circ. tunnel with a natural emittance
of e,~20 pm-rad for a beam energy of 3 GeV (ignoring the
impact of IBS) has been presented; as another step towards
a “Diffraction Limited” Storage Ring (DLSR).
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