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Abstract

We pursue Robust Design of a ring-based Synchrotron
Light Source as a system. In particular, the design philoso-
phy is based on:

e To control the Nonlinear Dynamics: control the Linear

Optics.
In particular, by:

e Optimal control of natural chromaticity.

e “] Transformer” between chromatic sextupoles for

unit cell.

o Higher-Order-Achromat for super period.

In addition, by pushing the Requirements for Robust &
Efficient Injection “upstream”, i.e., by considering on-axis
injection, and by utilizing reverse bends (to not limited by
theoretical minimum emittance cell), either:

e the natural emittance can be reduced further,

o or the Touschek lifetime can be improved.

Bottom line, a Design Choice.

INTRODUCTION

The main parameters for the baseline lattice [1] are sum-
marized in Table 1. It is based on the ESRF-EBS style -I
Transformer [2], with the center dipole replaced by a dis-
persive mid-straight; and a Higher Order Achromat over
two super periods with the cell tune Vg =
[19/8,14/16].

Table 1: Main Parameters for Baseline and Exploratory
Lattices

Parameter Baseline  Exploratory
Energy [GeV] 3.5 3.5
Circumference [m] 560.7 560.7
Tune (Qxy) 57.16/20.24 64.28/18.42
Emittance [pm-rad] 157 97
Energy spread 7.7.10% 1.1.10°3
Momentum compac- 1.17.10* 0.5.10*
tion

Natural chromaticity -76/-90 -109/-97
h/v

Energy loss/turn 0.67 0.93
[MeV]

Damping times Tx/y/, 14.2/19.5/12.0  7.2/14.1/13.6
[msec]

CONTROL OF LINEAR OPTICS

To improve the control of the Linear Optics, i.e. the
Quadratic Hamiltonian H,, we have [3,4]:
o Introduced reverse bends [5-7] to not limited by the
“Theoretical” minimum emittance cell, see Fig. 1.
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Optimized the relative bend angles, and gradient pro-
file for the symmetric longitudinal gradient bends (ad-
jacent to the mid-straight).

e Improved the decoupling of linear chromatic control,
see Fig. 2; to the level of ESRF-EBS [2].

e Symmetrized the phase advance for the Higher-Order-
Achromat for the long vs. standard straights.

e Reduced the horizontal chromatic tune footprint, by
improving local control of the driving term h,gg91;
which drives dsf,, see Fig. 3.

Nota Bene: this is work in progress; i.e., the linear optics

in the straights needs to be fine-tuned.
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Figure 1: Linear optics functions for 97 pm-rad lattice.

By XNy
0.8

Boxn, ——
otk By ——
0.6 | p
0.5 | E
04 -1
03 F -1

02| 4

0.1fF b

0 10 20 30 40 50 60 70 80 90 100
s[m]

Figure 2: Improved separation for linear chromatic control
for 97 pm-rad lattice.

BEAM DYNAMICS BENCHMARK

Our beam dynamics benchmark comprises of:

o Tune footprint, see Figs. 4-6.

e On and off-momentum DA for the bare lattice, see Fig.
7.

e On and off-momentum DA for the real lattice (i.e.,
with mechanical mis-alignments, magnetic field er-
rors, control of closed orbit, and beta-beat), see
Figs. 8-10.
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e On and off-momentum frequency maps for real lattice,
see Figs. 11-14.

e “Touschek tracking” will be included, after we have
introduced chromatic multipoles; for control of the off-
momentum DA.

Besides, as a Guideline for Robust Design of NSLS-II,

£ tune footprint of Av < 0.1 for stable beam for a fully

% loaded/deployed lattice was used [8-12]; i.e., based on

= what’s known for medium energy rings, e.g. ref. [13].

~ Hence, a direct comparison can be made with the baseline

Zlattice, for which we estimate an off-momentum DA of

< ~1.7% [1]; which is essentially the same as from Fig. 6 for

S the 97 pm-rad lattice. Contrarily, if we instead relax the lin-

= ear dispersion action, %, the off-momentum DA can be

‘2 improved beyond the baseline lattice.
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Figure 4: Tune footprint for horizontal plane.
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Figure 5: Tune footprint for vertical plan.
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Figure 6: Chromatic tune footprint.
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Figure 7: On and off-momentum dynamic aperture for bare
lattice.

CONCLUSIONS

We have outlined & demonstrated how to improve the
control of the nonlinear dynamics by improving the control
of the linear optics, i.e. the quadratic Hamiltonian H,, by:

o Introducing reverse bends; to not limited by the “The-

oretical” minimum emittance cell.

e Improving the decoupling of linear chromatic control.

e Reducing the horizontal chromatic tune footprint, by

improving local control of the driving term hqggg2;
which drives 05 f3,.
Besides, a Higher-Order-Achromat has been pursued from
the start [5, 8-12].
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In addition, by pushing the requirements for robust & effi-
cient injection “upstream”, i.e., by considering on-axis in-
jection [14, 15], either [3, 4]:
e the natural emittance can be reduced further,
o or the Touschek lifetime of the CDR lattice can b im-
proved by relaxing the linear dispersion action, 7.
In conclusion, a design choice.
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Figure 8: Dynamic aperture for real lattice; 20 Seeds.

Horizontal Momentum Aperture

bare —+—
4 w errors —+—i

x[mm]

5[%]

Figure 9: Horizontal off-momentum dynamic aperture for
real lattice.
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Figure 10: Vertical off-momentum dynamic aperture for
real lattice.
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Figure 13: Chromatic tune footprint.
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Figure 14: off-momentum diffusion map.
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