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Abstract

In a multi-pass Energy Recovery Linac (ERL), each cavity

must regain all energy expended from beam acceleration dur-

ing beam deceleration, and the beam should achieve specific

energy targets during each loop that returns it to the linac.

For full energy recovery, and for every returning beam to

meet loop energy requirements, we must optimize the phase

and voltage of cavity fields in addition to selecting adequate

flight times. If we impose symmetry in time and energy

during acceleration and deceleration, fewer parameters are

needed, simplifying the optimization. As an example, we

present symmetric models of the Cornell BNL ERL Test

Accelerator (CBETA) with solutions that satisfy the opti-

mization targets of loop energy and zero cavity loading.

INTRODUCTION

An Energy Recovery Linac (ERL) can create linac-quality

beams of high power and current that are useful as syn-

chrotron sources or for other experiments [1]. In an ERL,

beams are accelerated and decelerated through the same set

of cavities. These cavities reclaim energy from decelerat-

ing particle bunches to reduce the net power consumption

of ERL operation [2]. In this study, we consider two ERL

objectives: minimizing the power load on each cavity, and

achieving the design target for the maximum beam energy.

One could determine ERL settings by approximating the

beam as ultra-relativistic (v = c) throughout the ERL. In this

case, energy will be fully recovered if cavities are all set at

identical phases relative to beam entrance. The return loop

carrying beams in the process of accelerating or decelerating

would be an integer number of wavelengths long, with length

aλ for an arbitrary integer a. The loop with the highest

energy would require a half-wavelength offset, with length

(a+0.5)λRF , to switch from acceleration to deceleration [2].

However, ultra-relativistic settings will not provide sufficient

energy recovery for all beam energies within an ERL. Low-

energy beams will experience RF phases slipped away from

maximal energy gain, and synchrotron radiation in the return

loops can cause additional offsets in beam flight times.

Phase, voltage, and return loop length settings that min-

imize cavity load and achieve beam energy targets can be

determined by optimization. We present a method of enforc-

ing symmetric beam energy profiles during acceleration and

deceleration. This symmetry leads to a compact optimiza-

tion system, which we test in models of the Cornell BNL

ERL Test Accelerator (CBETA) (Fig. 1).

If CBETA settings use the v = c approximation, each

cavity experiences a power load up to 46 kW per 40 mA

beam (1.15 MeV per electron) when modeled in an ERL

Figure 1: CBETA layout [3]. CBETA has 4 physically dis-

tinct return loops and a linac that holds 6 evenly spaced RF

cavities. A 6 MeV injected electron beam accelerates to

150 MeV over 4 linac passes, and the beam returns to 6 MeV

after 4 more decelerating passes. The energy of the 150 MeV

beam is critical, as it intended for use in experiments.

tracking script with thin lens cavities. If loop lengths alone

are numerically optimized, each cavity has power load up to

2 kW per beam (50 keV). In practice, each CBETA cavity

runs on a maximum of 5 kW power, of which only 2 kW

are available for beam acceleration [3]. The v = c solution

is unfeasible, and the loop-only solution is risky. We turn

to symmetry optimization in search of solutions with more

reasonable power load.

OPTIMIZATION SYSTEM

Consider a M
2

-turn ERL with N cavities and M linac

passes. Individual passes and cavities use indices m and n,

such that 1 ≤ m ≤ M and 1 ≤ n ≤ N . The mth return loop

is between the mth and (m + 1)th linac passes.

In an ERL without shared return loops, the degrees of

freedom include: (M − 1) independent loop lengths, N cav-

ity phases, and N cavity voltages. The objectives include

minimization of N cavity loads, where load is defined as the

net beam energy gain within a single cavity over the full ERL

run. In addition, (M − 1) beam energies during return loops

must meet design targets to ensure proper beam control.

There are a total of (2N + M − 1) degrees of freedom,

which can be varied to satisfy (N + M − 1) objectives. In

CBETA, there are only M
2
= 4 shared return loops; this

gives 16 degrees of freedom and 13 objectives.

Symmetric ERL

ERL symmetry occurs when the decelerating beam en-

counters an exactly reversed sequence of energy steps and

electric field profiles as it initially experienced during accel-

eration. To create symmetry, we make the phase and voltage
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settings of the (N − n + 1)th cavity dependent on those of

the nth cavity. Degrees of freedom are then: M
2

independent

loop lengths, N
2

phases, and N
2

voltages.

A symmetric ERL has only [ N
2
] independent loads, where

the Gauss bracket denotes the floor of a number. The mth

and (M − m)th returning beams have identical energy: only
M
2

loop energy objectives are required. If return loops with

index m < M
2

can be calibrated post-optimization to match

the beam energy, then these loops need not be considered

as target energy objectives. Then, the system needs only

considers the design target of the highest energy beam, which

must be met if the beam is to be used in experiments.

If the objectives only consider the maximum beam energy,

the symmetric ERL has a total of N + M
2

degrees of freedom,

which must satisfy [ N
2
] + 1 objectives. If an optimization

system with equal numbers of variables and constraints is

desired, one can set all N
2

voltages and the first (M
2
−1) loop

lengths to reasonable constant values. In CBETA, symmetry

yields 10 possible degrees of freedom and 4 objectives.

SYMMETRY ENFORCEMENT

Our goal is to create a decelerating sequence of beam

energy and electric field encounters that is identical, but

reversed in order, to the accelerating sequence. In an ERL,

symmetry in the cavity fields can exist if the geometry of

the nth cavity is the mirror image of that of the (N − n+ 1)th

one, with respect to the center of the linac.

Linear Sequence: 2 Cavities

Before examining a full ERL, consider two cavities (A

and B) arranged end-to-end, in a mirror symmetric way

about a central point. In the later cavity, B, the beam should

decelerate to its original energy over an identical transit time

as the acceleration in A took: TB = TA. The RF phase of

cavity B when the particle enters, φin,B, must have a specific

relation to the cavity A input phase. To find this relation,

consider the electric field within A,

EA(s, t) = EA0(s) sin
(
ω(t − tin,A) + φin,A

)
, (1)

where ω is the RF frequency, the particle enters cavity A

at time tin,A, and φin,A is the input phase that we use as a

degree of freedom. The spatial RF field dependence is given

by EA0(s), and by convention it is chosen to start with a

positive value in the first cell of a multi-cell cavity. For

cavities with an odd number of cells, the spatial dependence

is a symmetric function about the center; for an even number

of cells, it is an anti-symmetric function. This means that

EB0(L − s) = ±EA0(s). The sign (+) is for odd and (−) is

for even numbers of cells per cavity.

For symmetry in A and B, the electric field at distance s

from the start of A must be opposite the field at distance s

from the end of B. Suppose each cavity has length Ls , and

the linac has total length L ≥ 2Ls ,

E(Ls − s) = −E(s) (2a)

EB(L − s, t(Ls − s)) = −EA(s, t(s)) (2b)

Solving for the unknown cavity B input phase, φin,B, we find

conditions for cavities with an odd or even number of cells,

φin,B = −φin,A − ωTA = −φout,A [odd]

φin,B = π − φin,A − ωTA = π − φout,A. [even]
(3)

If φin,B fulfills this phase condition, for any arbitrary choice

of φin,A, then the deceleration in B will exactly reverse the

acceleration from A. We now extend the 2-cavity argument

to find phase conditions for a full multi-turn ERL.

ERL: N Cavities, M Passes

Since the beam encounters each cavity multiple times

in an ERL, the input phase, φin, is not as useful a setting.

Instead, let φ0,n be the RF phase of cavity n at beam injection

time t = 0,
φ0,n = φin,mn − ωtin,mn

= φout,mn − ωtout,mn,
(4)

where the mn subscript indicates the mth pass of cavity n.

In the 2-cavity example, A and B represented a symmet-

ric acceleration-deceleration pair. In the full ERL, the mth

encounter of cavity n is the mirror symmetric pair of the

m′
= (M − m + 1)th encounter of cavity n′

= (N − n + 1),

where the primed encounter occurs first, i.e. m > m′. If N

is odd, then the central cavity will act as its own pair, but

the phase condition will follow the same form as the other

pairs. Our goal here is to find the initial phase of cavity n in

terms of the known φ0,n′ . Inserting these pair designations

into the phase conditions from Eq. (3),

φ0,n = −φ0,n′ − ωttotal [odd]

φ0,n = π − φ0,n′ − ωttotal, [even]
(5)

where the beam travels through the full ERL, from injector

to beam stop, over a total time interval, ttotal = ωtin,mn +

ωtout,m′n′ . For ttotal to accurately describe the total transit

time over the ERL, the time of flight of the return loop

between acceleration and deceleration must be set,

tloop, M
2
= ttotal − 2tout, M

2
N, (6)

where tout, M
2
N is the time from beam injection to the end of

the last accelerating pass. Time ttotal then becomes a degree

of freedom.

The Eq. (5) and Eq. (6) conditions are sufficient to guar-

antee that every stage of beam acceleration is matched by an

equivalent deceleration.

ERL CAVITY MODELS

To test ERL symmetry optimization, we construct mod-

els of CBETA beam flight using Mathematica and Bmad

softwares [4]. Models consider a transversely on-axis par-

ticle that encounters only drift pipes or cavities. The beam

traverses a cavity in time Tmn, where its energy changes by

some ΔEmn. If a modeled cavity is shorter than the physical

length in CBETA, the model element is centered within the

space, and drifts on either side are extended to compensate
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for the missing length. CBETA cavities have an elliptical

geometry with 7 cells [3].

In the thin lens (TL) model, cavities have zero length and

deliver a delta-function acceleration. If voltage is designated

V and particle charge q, the cavity models time and energy

as,

ΔETL = qV cos(φin), TTL = 0. (7)

The ultra-relativistic (UR) model treats the beam as having

speed v = c within a 7-cell cavity of length corresponding

to 7 stacked pillboxes,

ΔEUR = qV cos(φin), TUR =
L

c
=

7π

ω
. (8)

The finite time-tracked (FT) model accounts for non-

ultrarelativistic particle speeds by calculating energy, EFT,

from particle momentum pFT,

TFT =
L

2

(
1

vin

+

1

vout

)
(9a)

ΔpFT =
q

ω
Ein[cos(ωTFT + φin) − cos(φin)] (9b)

Lastly, the Runge Kutta (RK) model tracks the beam time

and energy by integrating through the RF fields directly. The

Runge Kutta algorithm can be applied to any map or model

of electric fields; in this study, we model a RK cavity as a

stack of 7 first-harmonic pillboxes with on-axis fields,

E(s) =
2V

L
sin(cs/ω) sin(ω(t − tin) + φin). (10)

The RK model should have the most accurate time and en-

ergy results of these models; however, it is computationally

intensive and slow in simulation. Since simulation speed

is key when optimizing for hundreds of iterations, we be-

gin with the simplest calculation, the TL model, and use

the solutions as starting points for optimization of the more

complex UR, FT, and RK models. Models are optimized

using Newton’s Method or built-in Bmad optimizers [4].

CBETA RESULTS

Optimization of the four CBETA models yields loads of

under 1 eV per electron, corresponding to 40 W for a 40 mA

beam (Table 1). The different objective values of the four

models indicate respective numerical noise thresholds; for

instance, the RK model has the highest optimization noise,

as its objectives are several orders of magnitude larger than

those of the other models. The physical system is expected

to have imperfect setting precision. If a single input setting

is varied from the Table 1 solution, then we can calculate

the range by which that input can vary before the objectives

exceed chosen tolerance bounds: ±2 kW load, and ±150 keV

maximum beam energy offset. Ranges for single-input errors

are in Table 2.
CONCLUSION

The load on each RF cavity must be minimized in order

for an ERL to properly recover energy from an accelerated

Table 1: Optimized Solutions. |Load| is the largest of the

6 cavity loads, in net energy change per electron; the peak

energy objective is ΔEloop,4 = Eloop,4 − 150 MeV. Phase

and total time are optimized. Loops 1-3 have flight times

set at 0.26 μs, selected to reasonably achieve the 150 MeV

target; voltage is 6.05 MV.

Objective TL UR FT RK

ΔEloop,4 (μeV) 37.104 -43.869 -72.360 851488

|Load| (μeV) 28.707 28.782 30.886 76798

Table 2: Tolerable Error Range of One Imperfect Input.

Assumes that only the indicated input deviates from the

optimized solution, while all others are perfect (Table 1).

The narrowest range of each input category (phase, voltage,

or loop length) is reported. Ranges do not describe scenarios

with multiple imperfect inputs.

Input TL UR FT RK

φ0 (◦) 1.7004 1.6782 2.2341 0.4725

qV (keV) 37.433 37.541 37.716 37.391

Loop (mm) 0.2557 0.2389 0.3162 0.3277

beam during deceleration. Phase, return loop length, and

voltage can be varied to reduce the load, but direct opti-

mization of the ERL results in a large system of variables

and constraints. Applying ERL symmetry with the Eq. (5)

and Eq. (6) conditions can reduce the size of this optimiza-

tion system, resulting in a less computationally intensive

search. In the CBETA models, optimization of a symmetric

ERL setup has resulted in solutions with cavity loads several

orders of magnitude smaller than the pre-optimized version.
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