
A CHANNEL ACCESS SOFTWARE PLATFORM FOR BEAM DYNAMICS
APPLICATIONS IN SCRIPTING LANGUAGES

J. Chrin, M. Aiba, J. Snuverink, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Abstract
To facilitate the seamless integration of EPICS (Exper-

imental Physics and Industrial Control System) into high-
level applications in particle accelerators, a dedicated mod-
ern C++ Channel Access interface library, CAFE, provides a
comprehensive and user-friendly interface to the underlying
control system. Functionality is provided for synchronous
and asynchronous interaction of single and composite groups
of channels, coupled with an abstract layer tailored towards
beam dynamics applications and complex modelling of vir-
tual accelerators. Equivalent consumable solutions in script-
ing and domain-specific languages can then be accelerated
by providing bindings to the relevant methods of the inter-
face platform. This is exemplified by CAFE’s extensive
MATLAB® interface, incarnated through a single MAT-
LAB executable (MEX) file, and a high performance Python
interface written in the Cython programming language. A
number of gratifying particularities specific to these lan-
guage extension modules are revealed.

MOTIVATION AND CONTEXT
EPICS (Experimental Physics and Industrial Control Sys-

tem) is an established framework that comprises an exten-
sive set of software tools for the development of distributed
control systems in the field of particle accelerators and large-
scale experiments [1]. Its principal communication protocol,
Channel Access (CA), allows for the optimized throughput
of data between server and client.1 A native C-based ap-
plication programming interface (API) [2] provides remote
access to low-level hardware data encapsulated in EPICS
Process Variables (PVs) residing in Input/Output Controllers
(IOCs) or other devices hosting a CA server. The CA client
library has thus provided the means by which extensions
or bindings to C/C++-based scripting and domain-specific
languages were first created. For each language instance, the
resulting CA extension methods are typically intertwined
with the specifics of a given domain’s C/C++ extension frame-
work. Their context is consequently confined to the system
in which they execute and cannot be readily applied to other
domains.

Another approach is to enforce a logical boundary be-
tween the CA components and that of the domain’s C/C++ ex-
tension API, by providing a comprehensive C++ software
platform, with sufficient breadth and flexibility, to act as
host to any number of C/C++-based high-level languages.
Significant advantages may be gained in this way:

1 Recent EPICS releases have been augmented with an additional network
protocol, pvAccess, providing structured data types and improved band-
width.

• The process of creating bindings to scripting and fourth-
generation languages is greatly streamlined.

• The inherent simplicity and convenience of maintaining
an otherwise complex CA interface code in a single
repository.

• A codebase that is well tested through its application
from different domains.

• A uniform response to errors and exceptions that facili-
tate tracebacks.

• In-house CA expertise ensures a rapid response to user
requests and problem solving.

It is within this context, coupled with a desire to avoid
any deprecated APIs propagating to new facilities, that mo-
tivation for the CAFE (A Channel Access interFacE) library
has developed [3].

A COMMON INTERFACE APPROACH
CAFE is a modern, multifaceted C++ CA client library

that follows recognized practices in CA programming [4],
placing careful attention to:

• Management of client-side connections.
• Memory optimization, particularly when connections

are restored.
• Separation of data retrieval from its presentation.
• Strategies for converting between requested and native

data types.
• Caching of pertinent data related to the PV and its

connection state.
• Aggregation of requests for improved performance.
• Adaptive correction procedure, e.g., for network time-

outs.
• Capturing and reporting results from method invoca-

tions with integrity.
The library provides a concise, diverse, and clean interface

with minimal details of the low-level CA implementation dis-
closed to the user. Functionality for synchronous and asyn-
chronous interaction is provided through a variety of meth-
ods. Abstraction layers tailored towards the development of
accelerator applications have also been implemented, e.g., re-
lated data sets may be addressed as a single logical software
entity (optionally configurable through XML). The struc-
ture of the codebase is of sufficient breadth to support end
solutions in scripting languages by providing ready-made
interfaces, with compliant data types, commonly required
in control system interactions. (As a point of illustration, a
std::vector in C++ maps directly to a Python list, facil-
itating the associated adapter layer.) The resulting library
is thus equipped to serve as a reliable software platform

Th
is

is
a

pr
ep

ri
nt

—
th

e
fin

al
ve

rs
io

n
is

pu
bl

ish
ed

w
ith

IO
P

10th Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-WEPGW079

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects
T04 Accelerator/Storage Ring Control Systems

WEPGW079
2661

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

that provides ample capabilities for data retrieval and con-
trol. The implementation details of the CAFE C++ API are
described elsewhere [5].

SCRIPTING LANGUAGE EXTENSIONS
The designation of the CA programming components to

a single library results in a reusable codebase that lessens
the extent to which adapter objects need be created to ex-
pose prescribed control functionality to scripting languages.
Furthermore, in implementing the adapters that facilitate the
data transfer between the CAFE library and a given domain’s
workspace, a recognized pattern emerges: after validation of
input arguments, the process effectively reduces to mapping
C and CAFE structured data types to their most appropriate
domain-specific counterpart.

Figure 1 illustrates the software architecture for
the integration of CAFE to high-level applications in
MATLAB® and Python, as described in the following.

CA Boost XML

C++ CAFE

mocha PyCafe

PythonMATLABC++/Qt

Third Party
Components

Adapter
Layer

Application
Layer

CA
Interface

IO
C

IO
C

IO
C

IO
C

Network

Figure 1: The software architecture for the integration of
CAFE to high-level applications. The mocha and PyCafe

adapters have been written in C++ and Cython, respectively.

The mocha MATLAB Executable File
MATLAB is an interpretive, fourth-generation program-

ming language and numerical computing environment, pro-
viding a graphical user interface framework and support
for object-oriented programming. Its use in the accelerator
community can be exemplified by the MATLAB Middle
Layer (MML) [6] which assembles third-party toolboxes
that collectively provide a framework for machine simula-
tion and operation. (The MATLAB Channel Access (MCA)
package [7] is one such tool item).

MATLAB was also the preferred language for proto-
type applications at the SwissFEL Injector Test Facility

(SITF) [8]. Here, connectivity to EPICS has been estab-
lished through a single, dynamically loadable MATLAB
executable (MEX) file, mocha, which enables CAFE routines
to be called from within the MATLAB workspace, in much
the same manner as MATLAB built-in functions. The moti-
vation for the mocha MEX file originates from a reappraisal
of the originally adopted MCA package and requirements
dictated by SITF, among which the need for support for all
MATLAB data types and compilation on 64-bit Linux archi-
tectures (with 64-bit indexing) were paramount. The mocha

interface is further designed such that the user is able to com-
municate with the control system with minimal coding. For
example, an operation on a PV can be undertaken without
the user having to explicitly establish a CA connection a
priori; this is handled autonomously at the time of initial
interaction. An account of the mocha syntax and its interface
to the underlying CAFE functions is given in Ref. [9].

The mocha release is accompanied with the long estab-
lished MCA scripts wherein the original, but now deprecated,
underlying CA calls have been replaced with mocha func-
tions. By simply adding the mocha MEX file (and associated
mocha-fied MCA scripts) to the MATLAB path, MCA users
can immediately take advantage of CAFE’s re-connection
management, rigorous error reporting, and improved perfor-
mance, without having to modify their own code. Applica-
tions requiring extended CA functionality may achieve this
by calling mocha methods directly.

The PyCafe Python Module
Python is an interpretative and object-oriented program-

ming language with dynamic typing and bindings, whose
syntax is advocated for promoting conciseness and read-
ability. The availability of third-party computational, data
visualization, and accelerator design (CPython) modules add
to its appeal. The integration of controls system function-
ality is accomplished by wrapping pre-existing C/C++ code
into specialized Python modules. The traditional approach is
to use Python’s C API, which, although offering optimal per-
formance, appears convoluted in comparison to specialized
toolkits, such as SWIG and the Boost.Python C++ library,
or the ctypes Python package. The procedure presented
here differs from other endeavours in that it encompasses
the emerging Cython technology [10] to engineer a high-
performing EPICS interface through the CAFE library.

Cython is a compiled language that provides a Python-like
style of coding while preserving the performance level of
C. Cython wrappers have been implemented for a full com-
plement of CAFE methods and made available through the
PyCafe extension module. Some particular features include
interfaces that cater for Python built-in types that imple-
ment the new Python protocol buffer, e.g., memoryview and
ndarray, allowing their data to be shared without copying.
The optimized C++ code generated by the cython compiler
further results in a ∼40% performance improvement for a
scalar retrieval operation when compared to ctypes, which
are subject to their Python overhead. The implementation
of the Cython interface to CAFE is described in Ref. [11].

Th
is

is
a

pr
ep

ri
nt

—
th

e
fin

al
ve

rs
io

n
is

pu
bl

ish
ed

w
ith

IO
P

10th Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-WEPGW079

WEPGW079
2662

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects
T04 Accelerator/Storage Ring Control Systems

SELECTED USE CASES
The CAFE library and its extensions can be readily con-

sumed in various ways and for different purposes, as exem-
plified by the following use cases.

Virtual Accelerator
A virtual accelerator (VA) [12] integrates an accelerator

model with control system channels to simulate the accel-
erator particle beam trajectory. Its principle motivation is
to provide a platform for the early development of beam
dynamics applications in advance of the accelerator’s com-
pletion. The procurement of ready prepared applications
hastens the commissioning procedure in readiness for user
operation. While virtual accelerators are now integral to
new facilities, their implementations differ as advancements
in software technologies are made. Here, a virtual acceler-
ator for SwissFEL has been realized entirely in Python. A
Python extension module provides access to an in-house,
Cython-based, online model that computes the SwissFEL
beam-optics parameters (following established accelerator
and lattice design principles [13, 14]), while interaction to a
CA server hosting the VA PVs is executed through PyCafe.

An important contributing factor in the realization of the
virtual accelerator is the relative ease with which a Python
callback function may be supplied for any asynchronous CA
interaction, whether it be a data retrieval or control opera-
tion. The Python callback function is invoked outside the
CA context of the underlying C++ callback and, as such, over-
comes its inherent non-reentrancy limitation. Interaction to
other channels may thus be induced from within the Python
callback allowing complex feedback systems and sequences
to be invoked. Such a capability is essential in ensuring a
realistic response to changes in the VA settings.

The extensive use of PyCafe in the SwissFEL virtual ac-
celerator, deploying several thousand PVs, directed many
aspects of the Cython interface, and further verified the un-
derlying C++ CAFE library.

SwissFEL
While MATLAB was the preferred language for SITF,

Python is emphasized at SwissFEL. Python applications
developed with PyCafe, under the auspices of the virtual
accelerator (of which the orbit feedback tool, linac energy
manager and feedback, and beam based alignment, are a few),
could be readily applied at SwissFEL with little modification.
GUI development is realized with PyQt, where the passage
of asynchronous data to widgets is triggered from within
the supplied callback function using Qt’s specialized signals
and slots mechanism.

Swiss Light Source (SLS)
A primary motivation of the CAFE C++ library was to

target the deprecated CDEV library [15] in use at the SLS.
CDEV C++ classes feature in the deployment of a CA server
whose persistent objects are accessed by beam dynamics
applications through a CORBA middleware layer [16]. The

software architecture is to be readdressed in the future in
conjunction with the planned SLS-2 upgrade [17]. In the
meantime, the most recent of SLS applications have been
delivered in C++/Qt atop of purposefully built CAFE inter-
faces, e.g., for the synchronized readout of multiple wave-
form records to facilitate linear optics measurements and
corrections [18].

Interfaces for specialized tasks are easily provided in
CAFE. One such example is a ‘set and match’ utility that sets
a PV to a given value and follows an associated readback PV
to verify whether or not it reaches the specified value within
a given tolerance and timeout period. The method is par-
ticularly suited to motion controllers, e.g., for the operation
of insertion devices in accelerator-based light sources. An
extended interface further allows multiple PVs to be set with
a single interaction and their associated readback PVs to be
tracked simultaneously (and likewise verified against their re-
spective set values), as may be required in multidimensional
scans.

High Intensity Proton Accelerator (HIPA)
Similarly to the SLS, motivation for CAFE’s use at the

HIPA cyclotrons facility originated from the requirement
to eliminate the dependency on unsupported CA code. The
migration to CAFE proved straightforward and its powerful
interface resulted in a reduced codebase for several appli-
cations. In addition, good practices, such as establishing
channel connections in unison at application startup, thereby
reducing both network traffic and wait time, were easily
implemented.

A project is also underway to reduce the frequency of
beam interruptions initiated by the machine protection sys-
tem (mostly due to beam loss) by recognizing the accelerator
beam conditions that lead to their occurrence with the aid of
machine learning techniques. Predictive corrections can then
be applied in advance to prevent the anticipated interruption.
The time evolution of all diagnostic signals, numerous accel-
erator set points, and additional environment signals, such
as temperatures, will serve as input to the decision making
process. To facilitate the high throughput of data, CAFE’s
advanced interface features, i.e., that incorporate the readout
of aggregated channels, will be put into good effect.

CONCLUDING REMARKS
The CAFE C++ software platform provides several intu-

itive and user-friendly interfaces to EPICS that shelter the
user from the intricacies of programming with the native C
Channel Access library. Its capability to serve as an EPICS
integration layer to application developers, in their many
programming languages and for their various purposes, has
been demonstrated. CAFE has been developed on the Linux
platform, but also successfully compiled on macOS and Win-
dows. The open-source software is available from the CAFE
website [3] where extensive code examples demonstrate its
usage.

Th
is

is
a

pr
ep

ri
nt

—
th

e
fin

al
ve

rs
io

n
is

pu
bl

ish
ed

w
ith

IO
P

10th Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-WEPGW079

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects
T04 Accelerator/Storage Ring Control Systems

WEPGW079
2663

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

REFERENCES
[1] EPICS, https://epics-controls.org
[2] J. O. Hill and R. Lange, “EPICS R3.14 Channel Access

Reference Manual”, http://epics-controls.org/
resources-and-support/documents/ca/

[3] CAFE, http://cafe.psi.ch
[4] D. Zimoch, “Channel Access client programming”, presented

at the EPICS Collaboration Meeting, Jul. 27-29, 2009, NFRI,
Daejeon, Korea,
https://epics.anl.gov/meetings/2009-07/

[5] J. Chrin, “An update on CAFE, a C++ Channel Access client
library and its scripting language extensions”, in Proc. 15th
Int. Conf. on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS’15), Melbourne, Australia,
Oct. 2015, pp. 1013–1016.
doi:10.18429/JACoW-ICALEPCS2015-WEPGF132

[6] G. Portmann, J. Corbett, and A. Terebilo, “An accelerator
control middle layer using MATLAB”, in Proc. 2005 Particle
Accelerator Conf. (PAC’05)”, Knoxville, TN, USA, May
2005, paper TPAT077, pp. 4009–4011.

[7] T. Terebilo, “Channel Access client toolbox for MATLAB”,
in Proc.8th Int. Conf. on Accelerator and Large Experimen-
tal Physics Control Systems (ICALEPCS’01), San Jose, CA,
USA, Nov. 2001, paper THAP030, pp. 543–544.

[8] T. Schietinger et al., “Commissioning experience and beam
physics measurements at the SwissFEL Injector Test Facility”,
Phys. Rev. Accel. Beams, vol. 19, p. 100702, 2016.
doi:10.1103/PhysRevAccelBeams.19.100702

[9] J. Chrin, “MATLAB objects for EPICS Channel Access”, in
Proc. 14th Int. Conf. on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS’13), San Francisco, CA,
USA, Oct. 2013, paper MOPPC146, pp. 453–456.

[10] Cython C-Extensions for Python, https://cython.org

[11] J. Chrin, “A Cython interface to EPICS Channel Access for
high-level Python applications”, in Proc. 11th Int. Workshop
on Personal Computers and Particle Accelerator Controls
(PCaPAC’16), Campinas, Brazil, Oct. 2016, pp. 21–24.
doi:10.18429/JACoW-PCAPAC2016-WEUIPLCO04

[12] N. Yamamoto, “Use of a virtual accelerator for a development
of an accelerator control system”, in Proc. 1997 Particle
Accelerator Conf. (PAC’97), Vancouver, BC, Canada, May
1997, pp. 2455–2457.

[13] MAD - Methodical Accelerator Design,
http://madx.web.cern.ch/madx/

[14] K. Fuchsberger and Y. Inntjore Levinsen, “PyMad – Integra-
tion of MadX in Python”, in Proc. 2nd Int. Particle Accelera-
tor Conf. (IPAC’11), San Sebastián, Spain, Sep. 2011, paper
WEPC119, pp. 2289–2291.

[15] J. Chen, G. Heyes, W. Akers, D. Wu, and W. A. Watson III,
“CDEV: an object-oriented class library for developing de-
vice control applications”, in Proc. 1995 Int. Conf. on Ac-
celerator and Large Experimental Physics Control Systems
(ICALEPCS’95), Chicago, IL, USA, Oct./Nov. 1995, paper
M4B-a.

[16] M. Böge, J. Chrin, M. Muñoz, and A. Streun, “Development
of beam dynamics applications within a CORBA framework
at the SLS”, in Proc. 7th European Particle Accelerator Conf.
(EPAC’00), Vienna, Austria, Jun. 2000, paper TUP7B10,
pp. 1354–1356.

[17] A. Streun et al., “SLS-2 - the upgrade of the Swiss Light
Source”, J. Synchrotron Radiat., vol. 25, pp. 631–641, 2018.
doi:10.1107/S1600577518002722

[18] M. Aiba, M. Böge, J. Chrin, N. Milas, T. Schilcher, and
A. Streun, “Comparison of linear optics measurement and
correction methods at the Swiss Light Source”, Phys. Rev. ST
Accel. Beams, vol. 16, p. 012802, 2013.
doi:10.1103/PhysRevSTAB.16.012802

Th
is

is
a

pr
ep

ri
nt

—
th

e
fin

al
ve

rs
io

n
is

pu
bl

ish
ed

w
ith

IO
P

10th Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-WEPGW079

WEPGW079
2664

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects
T04 Accelerator/Storage Ring Control Systems

