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Abstract 
Mechanical instabilities have been observed in super-

conducting RF cavities, when multiple cavities are driven 
by a single klystron and these cavities are regulated by vec-
tor-summing the outputs from these cavities. A nonlinear 
theory has been developed to study the source of this me-
chanical instability, which is due to the coupling between 
Lorentz force detuning and mechanical oscillation by par-
ametric pumping. Analytical and numerical analysis of this 
model show regions of stability, limit cycles and instabili-
ties. These results are in agreement with the observed os-
cillations by TRIUMF’s eLinac Acceleration Module. 

INTRODUCTION 
In the TRIUMF ARIEL facility, electron acceleration is 

achieved currently by 3 9-cell Tesla type cavities [1]. The 
injection Cryomodule is powered by its own klystron, how-
ever, the 2 acceleration Cryomodules are driven by one sin-
gle klystron.  Vector sum feedback control is used for field 
stabilization.  Although vector sum feedback control has 
been proven to work well for pulse operated machines [2],  

Figure 1: Experimental results showing the voltages from 
2 cryomodules that have counter phase oscillations. 

CW operation presented some new challenges.  One of 
these challenges is observed at TRIUMF in July 2018, 
when the push for higher gradient was attempted.  At low 
gradient the vector sum system was stable. When the field 
gradient was increased, amplitude oscillations started to 
grow in both cavities and eventually settled into counter-
phase limit cycle oscillations as shown in Fig. 1.  Hence 
the vector sum was perfectly stable while both cavities are 
ringing.  As these oscillations only build up over several 
seconds this phenomenon was not observable in pulsed 
machine.  Previous nonlinear theory [3] did not draw any 
conclusion on the regime in this paper, the effect of Lorentz 
force on a single cavity with no field regulation will be an-

alyzed. It will be shown that under certain operating con-
ditions, parametric pumped oscillation and limit cycle can 
occur. 

TIME DEPENDENT LORENTZ FORCE 
A RF cavity can be simulated by a parallel RLC lumped 

circuit at its operating frequency as  
2 2

2 2
0

1 1 22 fdVdV d C dC dV d VV C V
R dt dt dt dt dt L Z dt

     . (1) 

Using V  veit , 2 1
LC

   and , together 

with a dimensionless detuning length a and variation in a 
as  

,     (2) 

Eq. (1) can be simplified to 

 1 fv ja v v


       (3) 

Let the variation in v be v , then the variation part for Eq. 
(3) is 

  01 0v ja v jx v jv x  


       (4) 
The phase shift between δv

 
and v

 
, vf  is represented by the 

imaginary part j, which is due to the detuning.  Since x
oscillates around a, we can let 

 cosx r t t       (5) 
where r(t) is a slow varying function of t, which is normal-
ized so that a period of the oscillation is 2πt. After this 
renormalization, the values of the dimensionless numbers 
a and x remain unchanged, but ϖ becomes the ratio be-
tween the rf bandwidth to the mechanical frequency.  For 
later use, we define 

siny x r t


        (6) 
The solution for δv can be expressed as a power series  
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We can write Eq.(8) in a more compact form by defining 
k k ki          (8) 

and Eq. (8) becomes  
 

0

ikt
k

k
v e 



       (9)  

By substituting Eq. (9), Eq. (5) in Eq. (4) and applying Eu-
ler’s identity we get 
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Collecting terms of the same order in ikte for 0 ≤ k ≤ 2 
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Eq. (12) is O(r) and O(r3), while that of Eq. (11) and Eq. 
(13) are O(r2).  By applying Method of perturbation we 
first solve Eq. (12) to first order 

1 0
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jrv
i ja


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    (14) 

and gets  
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Then apply this result to Eq. (11) and Eq. (13).  The results 
are then used to reiterate Eq. (12) to obtain the third order 
result.  By combining the results of Eq. (15), Eq. (11) and 
Eq. (13) we get 

  (16) 

 

MECHANICAL DYNAMICS 
The mechanical dynamics describe the physical move-

ment of the walls for a cavity driven by Lorentz force var-
iations.  Defining the Lorentz force variation as 

 0 0G v v v v         (17) 

By applying Eq. (16) to Eq. (17) we can write 
1 20 21 3G g g g g         (18) 

where 

  (19) 

 (20) 

   (21) 

  (22) 

The In-phase component of g1 (the term x) represents os-
cillation.  The quadrature-phase component of g1 (the term 
y) determines the growth/decay of the orbit. 

Newton’s 2nd law written in phase space is 

0 1 0
1

x x F
y Gy 
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   (23) 

where ς is the viscous damping coefficient and G is a force 
excluding the internal restoring force. When G=G(x, y), the 
system is a parametric system. Linearizing the system 
around its equilibrium point x, y = 0 one gets 
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  (24) 

Letting ς  = 0, |a|<<1, then the eigenvalues of Eq. (24) are 

   (25) 

Hence the linearized system has an unstable spiral center 
at x, y = 0 for a < 0 and a stable spiral center for a > 0.  In 
particular, the growth/decay rate has a maximum at ϖ = √3. 
As the cavity vibrates mechanically, the RF voltage lags 
behind due to ϖ.  While the In-phase term of the Lorentz 
force changes the equivalent spring constant of the me-
chanical vibration, the quadrature term can either drive or 
damp this vibration. An important characteristics of para-
metric oscillations that distinguish them from forced oscil-
lation is that if the initial amplitude is zero, it will remain 
so, a fact we can used to suppress these oscillations. 

A. Limit Cycle, Bifurcation 
From Eq. (19) and Eq. (21), where g1 depends on the 

product a.x and a.y, g20 depends on x2, xy and y2.  These 
give rise to the possibility that at some x,y there exist a sign 
change for G.  This is expressed in a more rigorous defini-
tion as the Poincare-Andronov-Hopf bifurcation [4], where 
it shows that the above system satisfied all the 3 require-
ments for a supercritical bifurcation, and leads to the exist-
ence of stable limit cycles as illustrated in Fig. 2.  When an 
unstable oscillation grows above a certain radius its trajec-
tory crosses over to the stable region. Then non-linear ef-
fects causes the trajectory to linger longer in this stable re-
gion, therefore balancing between growth and decay and 
resulting in a limit cycle.  We can get an estimate of the 
radius of the limit cycle by letting g1 ≈ g21.  Then for ϖ = 
2, r ≈ 10a.  Note that the radius of the limit cycle is many 
times larger than the initial detuning, which implies the dy-
namic detuning will be quite large even for a small initial 

10th Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-WEPRB003

MC7: Accelerator Technology
T07 Superconducting RF

WEPRB003
2799

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I



detuning before the system settles into a limit cycle oscil-
lation. 
 

 
Figure 2: Trajectories for different detuning on linear and 
nonlinear systems due to Hopf Bifurcation. 

 

SYSTEM SIMULATION 
We can apply directly Eq. (4), Eq. (17) and Eq. (23) to 

form a set of coupled non-linear differential equations 
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      (26)
 

This set of equations can then be numerical integrated 
using some arbitrary non-trivial initial conditions. The re-
sults obtained can be used to compare with that obtained 
analytically. Fig. 3 shows the growth rate vs. ϖ, which 
clearly shows the dependence of the growth/decay rate on 
ϖ matches well with theory.  Fig. 4 shows the phase space 
plot of the cavity wall movement for an initial detuning an-
gle of a = -0.026 or -1.5o at 2 different initial displace-
ments.  The theory predicts that although a < 0 is unstable, 
a stable limit cycle of r ≈10a exists.  This is confirmed by 
the trajectories computed in Fig. 4.  The simulation can be 
easily extended into feedback controlled vector sum multi-
ple cavities by imposing the feedback conditions 

, , ,i q ref reff i q p i qv v K v      (27)  

DISCUSSION 
The conditions for Lorentz force induced parametric os-

cillation are quite specific.  We need the following condi-
tion to occur:  
 A high electric fields ( 10MV/m), which is only in 

the domain of superconducting cavities. 
 Poor voltage regulation, such as regulating multiple 

cavities using vector sum feedback. 
 CW-operation, as it takes several seconds for these os-

cillation to grow. 

 Driven frequency higher than cavity’s resonant fre-
quency. 

Since these oscillations are parametrically pumped, to 
overcome or suppress these oscillations one can either sup-
press the initial displacement and its speed in the form of 
microphonic suppression, or provide artificial damping to 
the system. 

 
Figure 3: Grow/Decay Rate for different detuning. 

 

 
Figure 4: Limit cycle for x0=0.1 (red trajectory) and 
x0=0.3  (blue trajectory).  The trajectory of the blue curve 
crosses over itself due to 3rd and higher order nonlinearity. 

CONCLUSION 
We have presented a theoretical analysis of Lorentz force 

parametric pumped oscillation on a single cavity.  The anal-
ysis provides a good understanding how and why these os-
cillations grow or decay.  This provides possible solutions 
to stabilize vector sum cavities. 
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