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Abstract 
To date, the optimum operating point of a high-intensity 

hadron ring has been determined on the basis of the con-
ventional incoherent picture. It is generally chosen in the 
tune diagram such that the so-called “incoherent tune 
spread” of a stored beam does not overlap with low-order 
“single-particle resonance” lines. We here propose a new 
approach to construct the stability tune diagram on the ba-
sis of the self-consistent coherent picture. The betatron res-
onance condition recently conjectured from one-dimen-
sional Vlasov predictions is employed for this purpose. The 
proposed general rule for the stability-chart construction is 
very simple and free from any model-dependent unobserv-
ables like space-charge-depressed incoherent tunes. As an 
example, we apply the present rule to the lattice of the rapid 
cycling synchrotron at J-PARC and explain why the oper-
ating bare tunes of this machine should be chosen slightly 
below 6.5 in both transverse directions.  

INTRODUCTION 
Resonance is inevitable in modern particle accelerators 

composed of a periodic array of identical alternating-gra-
dient (AG) beam focusing lattices. The machine operating 
point has to be put sufficiently away from dangerous low-
order resonance lines along which serious emittance 
growth and resultant beam loss may occur. The classical 
single-particle resonance condition given by Courant and 
Snyder can be written as 

k0x  ℓ0 y  n,                             (1) 
where (0x ,0 y )  are the horizontal and vertical bare beta-
tron tunes per lattice period or around the ring, and (k ,ℓ ,n) 
are integers [1]. The driving term of this resonance is pro-
portional to x |k| y |ℓ |  whose order is | k | | ℓ | ( m). 

Equation (1) has to be modified in high-intensity hadron 
machines and cooler storage rings where the space-charge 
interaction plays an important role. The natural repulsive 
force weakens the artificial focusing force from quadrupole 
magnets, leading to the reduction of effective betatron 
tunes down to  x (0x )  and  y (0 y )  in both transverse 

directions. The magnitudes of the tune reduction, 0x  x

(  x )  and 0 y  y (  y ), are referred to as incoherent 
tune shifts. The so-called incoherent resonance condition 
is obtained by simply replacing the bare tunes in Eq. (1) by 
the space-charge-depressed tunes, namely, 

k x  ℓ y  n.                              (2) 
The incoherent tune shifts take different values depend-

ing on which particle we observe. The effective tunes 

( x , y )  of the particles forming a particular beam cover a 
finite area in the tune diagram, which is called the incoher-
ent tune spread. As schematically illustrated in Fig. 1, we 
are required to choose the machine operating point P in the 
tune diagram such that the tune-spread area does not cross 
nearby low-order single-particle resonance lines predicted 
by Eq. (1). This type of stability chart has been often em-
ployed in the community to explain space-charge-induced 
beam loss in a high-intensity hadron machine or to decide 
the optimum operating point. The instability of the beam 
core in phase space is, however, expected to grow collec-
tively rather than in an incoherent way, considering the 
reachable distance of the Coulomb interaction. In the pre-
sent paper, we propose an alternative approach for the con-
struction of a stability map in the betatron tune space, tak-
ing the collective nature of the core dynamics into account. 

 

 
Figure 1: Conventional tune diagram based on the concept 
of incoherent tune spread. 

COHERENT RESONANCES 
Conventional Conditions 

The first pioneering work on coherent resonances of a 
dense beam core was done by F. J. Sacherer who mathe-
matically solved the one-dimensional (1D) Vlasov-Poisson 
equations using the uniform-density model [2]. Under the 
smooth approximation, he derived the resonance condition 

m(0 Cmh )  n,                           (3) 
where 0 represents a transverse bare tune (either 0x or 
0y),  is the space-charge-induced tune shift in the corre-
sponding direction, and Cmh is a constant factor with two 
indices representing the azimuthal (m) and radial (h) mode 
numbers. The Sacherer’s analytic theory was extended by 
R. L. Gluckstern to a coasting round beam, i.e., the case 
where 0x 0 y

 [3]. 
I. Hofmann et al. later proposed a two-dimensional (2D) 

coherent resonance condition, adding a correction term to 
Eq. (2): 

k x  ℓ y    n,                          (4) 
 ___________________________________________  
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where  is the coherent tune shift away from the incoher-
ent resonance condition [4]. The incoherent tunes in Eq. (4) 
have been defined assuming the uniform particle density. 
The coherent shift  is a complicated function of several 
parameters. A few different values of Cmh are theoretically 
possible in the 2D case even for a specific order of mode 
with m = h [5]. 

Betatron Resonance Ansatz 
H. Okamoto and K. Yokoya (OY) generalized the Sa-

cherer’s approach, solving the 1D Vlasov-Poisson equa-
tions without the smooth approximation [6]. The OY the-
ory predicts that the severe coherent resonance of the mth 
order may occur at high beam density under the condition 

m(0 Cm )  n
2

,                         (5) 

where n   is an integer, the coherent tune-shift factor Cm 
depends only on the resonance order m, and    repre-
sents the root-mean-squared (rms) tune shift that can be re-
lated to the rms tune depression  as   (1)0 . Par-
ticularly noteworthy is the factor 1/2 on the right-hand side 
that results in a two-fold increase of the density of reso-
nances in the tune diagram. External imperfection fields 
can drive resonances only with even n . The space-
charge-driven resonances can take place regardless of the 
parity of n , but they are naturally weakened as the beam 
density decreases. 

Since it is hopeless to solve the 2D Vlasov-Poisson equa-
tions mathematically for arbitrary AG lattices, a plausible 
conjecture was made recently in Ref. [7]. The proposed 2D 
resonance condition has a remarkably simple form, in spite 
of the complex collective process behind: 

k(0x Cm x ) ℓ (0 y Cm y )  n
2

,           (6) 

where the horizontal and vertical rms tune shifts can be 
evaluated from  x( y )  (1x( y ) )0x(0 y)

 with x( y )
 being 

the rms tune depressions. Equation (6) is reduced exactly 
to Eq. (5) in the case of purely horizontal or vertical reso-
nance where (k ,ℓ )  (m,0) or (0,m) . In striking contrast 
with Eq. (4), Eq. (6) has the parametric factor 1/2 on the 
right-hand side and is free from any model-dependent un-
observables, in other words, incoherent parameters. The 
rms tune shifts can uniquely be determined regardless of 
the form of the phase-space distribution function. Note also 
that the Cm-factor is constant over the whole tune space, 
unlike the coherent tune shift  in Eq. (4) that depends on 
the integer numbers (k ,ℓ ) , the beam ellipticity, and even 
the operating bare tunes [4,5]. 

COHERENT TUNE-SHIFT FACTORS 
We performed a huge number of self-consistent simula-

tions to estimate the Cm-factor, using the particle-in-cell 
code “WARP” [8]. Three-different types of initial particle 
distributions in phase space, i.e., Gaussian, waterbag, and 
parabolic, were adopted for this purpose. A typical distri-
bution of resonance stop bands is shown in Fig. 2 where 

the emittance growth of the Gaussian beam after the 
transport over 100 AG periods is color-coded in the tune 
diagram. We have assumed the horizontal and vertical rms 
emittances to be equal at injection. The beam intensity and 
emittances are fixed over the whole tune space at specific 
values that give the tune depression of 0.9 at the operating 
point (0x ,0 y )  (1/ 6,1/ 6) . The solid, dotted, and dashed 
lines in the picture are obtained from Eq. (6) with Cm = 0, 
0.5, and 1.0, respectively, under the assumption that all vis-
ible emittance-growth bands are due to the linear (m = 2) 
and first nonlinear (m = 3) resonances. We see that each in-
stability band is located roughly in-between the solid and 
dashed lines, which suggests that the Cm-factor is some-
what smaller than unity in these low-order modes. We tried 
several different initial conditions to figure out the param-
eter-dependence of these resonance stop bands [9]. Table 1 
summarizes the results obtained by fitting the theoretical 
expectation from the coherent resonance formula to the po-
sitions of numerically observed non-coupling resonance 
bands. Similar tune-shift factors below unity have been 
found in the case of 2D coupling resonances as well. 
 

 
Figure 2: Stop-band distribution obtained from WARP sim-
ulations. 
 

Table 1: Numerically Estimated Cm-Factors 

 Gaussian Parabolic Waterbag 
C2 0.78 ± 0.05 0.73 ± 0.05 0.71 ± 0.04 
C3 0.77 ± 0.06 0.85 ± 0.04 0.87 ± 0.03 
C4 0.71 ± 0.06 0.87 ± 0.02 0.92 ± 0.01 

SUPPRESSION OF DIFFERENCE RE-
SONANCE BANDS 

The difference resonance band along k0x  k0 y  0   is 
almost invisible in Fig. 2. This is because the horizontal 
and vertical rms emittances (x, y) have been set equal in-
itially in these simulations, which deactivates the mecha-
nism of emittance transfer under the condition 0x 0 y

 . 
Surprisingly, a similar simple argument can be made for 
arbitrary difference resonances, no matter whether the 
beam intensity is high or low. We have discovered that the 
difference resonances of a particular order can be elimi-
nated by choosing the initial emittance ratio [9] 
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Ikℓ 
 x

k

 y

ℓ  0.                            (7) 

In the above-mentioned case where k  ℓ , Eq. (7) gives 
the magic emittance ratio  x /  y  1 that has actually been 
fulfilled in Fig. 2 along k0x  k0 y  0 . 

Figure 3 shows another example where the horizontal 
emittance is set twice as large as the vertical (  x /  y  2 ) 
everywhere in the tune space. The imperfection field pro-
portional to y3  3x2 y  has been intentionally introduced to 
enhance the third-order resonances. Nevertheless, the dif-
ference resonance bands with (k,ℓ , n )  (2, 1, 0)  and 
(2, 1,1)  are invisible while the emittance growth has be-
come very severe on the sum and vertical resonances of the 
third order. It is worth noting that the resonance band along 
k0x  k0 y  0  has now appeared clearly due to the break-
down of the condition Ik ,k  0 . 
 

 
Figure 3: Stop-band distribution obtained from WARP sim-
ulations under the condition  x /  y  2 . 

STABILITY MAP 
The coherent resonance conjecture in Eq. (6) can be em-

ployed to provide a simple and practically useful guideline 
for the determination of the optimum machine operating 
condition. Our past experiences in ion-trap experiments 
and numerical simulations indicate that careful considera-
tion to coherent resonances of up to the third order ( m  3
) is always demanded [7]. If the beam goes through a huge 
number of lattice periods before extraction or only very lit-
tle emittance growth can be tolerated, we probably need to 
take care of the next order as well ( m  4 ). Highly nonlin-
ear modes are very weak and thus suppressed by the Lan-
dau damping mechanism unless strong nonlinear driving 
forces due to lattice imperfections are present in the ma-
chine. 

On the other hand, it is extremely difficult to make a gen-
eral quantitative argument on the band widths of coherent 
resonances. We here simply assume the widths of all stop 
bands to be equal to  





Rrp

4
2 3 ,                           (8) 

where rp is the classical particle radius,  and  the Lorentz 
factors,  the line density of the beam, R the average radius 
of the ring, and for simplicity we have put  x   y (  )  
and x y ( ) . This criterion will give us a sufficient 
safety margin because it has most likely overestimated the 
widths of nonlinear stop bands. 

Let us apply the present rule to the lattice of the rapid 
cycling synchrotron (RCS) at J-PARC [10]. The RCS, 
whose circumference is 2R = 348.333 m, has a three-fold 
symmetric structure, which means that the driving har-
monic numbers particularly important in practice are | n |
0, 3, 6,… After the ideal injection painting at the kinetic 
energy of 400 MeV, the un-normalized edge emittance 
reaches 200mm.mrad in both transverse directions. This 

corresponds to   50 mm.mrad. The number of protons 
contained in a single bunch of 92 m long is about
4.1651013 . Substitution of these numbers into Eq. (8) 
gives  /  0.13. 

Recalling the fitting results in Table 1, we assume that 
C2  0.75 and C3  0.80 . The resultant distribution of the 
coherent resonance bands is sketched in Fig. 4 where all 
possible self-field-driven resonance bands of the second 
and third orders have been taken into account. The stop 
bands of the darkest shade can be enhanced by external im-
perfections. The narrow areas in-between a single-particle 
resonance line and its adjacent coherent stop band, indi-
cated with a lighter shade, are potentially dangerous and 
thus should be avoided because a quasi-incoherent reso-
nance may occur in the beam tail leading to non-negligible 
particle losses. The width of the difference resonance band 
along k0x  k0 y  0  has been disregarded in Fig. 4 be-
cause  x   y

 ( Ik ,k  0) in the RCS. After a careful tune sur-
vey, the operating point of the RCS has been chosen at 
around (0x ,0 y )  (6.45,6.42) , which is perfectly consistent 
with the theoretical prediction in Fig. 4. 
 

 
Figure 4: Tune diagram of the J-PARC RCS. The red dot 
indicates the optimum operating point of the RCS found 
through considerable experimental effort. 
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