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Abstract 

Starting from the principle of least action, we construct 

a general Hamiltonian formalism for beam dynamics in 
drift-tube linear accelerators (DTLs). The Alvarez-type 

structure is considered as an example, but the present the-

ory can readily be extended to other types of conventional 

linacs. The three-dimensional Hamiltonian derived here in-

cludes the third-order chromatic term as well as the effects 

from acceleration and space charge. A clear dynamical 

analogy between the DTL system and compact Paul ion-

trap system is pointed out, which suggests that we can con-

duct a fundamental design study of high-intensity hadron 

linacs experimentally in a local tabletop environment in-

stead of relying on large-scale machines. 

LAGRANGIAN 

The starting point is the principle of least action 

                                 (1) 

where Lt is the Lagrangian using time t as the independent 

variable. The spatial position of a charged particle traveling 

in the DTL can be specified by the vector  

whose z-derivative is . Here, the prime 

stands for differentiation with respect to z.  are 

the unit vectors toward the transverse x-y and longitudinal 
z directions, perpendicular to each other. In beam dynamics, 

it is most convenient to take the longitudinal coordinate z, 

instead of t, as the independent variable. The Lagrangian 

of a relativistic charged particle moving under the influ-

ence of electromagnetic fields can then be given by 

   (2) 

where m and q are the mass and charge state of the particle, 

c is the speed of light, and (f, A) are the scalar and vector 

potentials that satisfy the Maxwell equations. Making use 

of the cylindrical coordinates, we have 

      (3) 

where . The total vector potential is the 

sum of the contributions from the radio-frequency (rf) ac-

celerating field (A(rf)), the transverse focusing field by 

quadrupole magnets (A(mag)), and the space-charge field 

(A(sc)); namely, . On the other 

hand, the scalar potential originates only from the space-

charge field; namely, . 

ELECTROMAGNETIC POTENTIALS 

Let us consider the regular DTL structure whose periodic 

length is . Assuming the axisymmetric TM mode for 

particle acceleration, we obtain the following vector poten-

tial components from the Maxwell equations: 

         (4a) 

                                (4b) 

     (4c) 

where In is the modified Bessel function of order n, 

 with l being the rf wavelength, an is the nth 

Fourier coefficient, and . 

When the velocity of the synchronous particle is bsc, we 

have  for the Alvarez-type DTL and  

for the Wideröe-type DTL. The following discussion fo-

cuses on the Alvarez-type structure, but the extension of 
the present formalism to other types of DTLs is straightfor-

ward. In order to give an approximate expression of the 

Fourier coefficients, we assume that the axial electric field 

exists only within every accelerating gap of width g and is 

uniform at the aperture radius r0. Writing the axial field in 

each gap as  where E0 is constant, 

we obtain 

                             (5a) 

  (5b) 

and  for odd harmonic numbers [1]. In the Alvarez 

DTL, the forward traveling wave of n = 2 is used for beam 

acceleration. The contribution from other traveling waves 

of different phase velocities can be ignored, which enables 

us to simplify the vector potential as 

            (6a) 

        (6b) 

where , and 
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The transverse components of the vector potential A(mag) 

can be ignored provided that the beam focusing magnets 

produces no axial multipole fields; namely, 

, and 

               (7) 

where Bn and zn are constants. If we regard the beam as a 

uniform axial current, the space-charge-induced vector po-

tential A(sc) can also be assumed to have the axial compo-

nent only; namely,  where  is re-

lated to the scalar potential as . 

HAMILTONIAN 

Using the electromagnetic potentials defined in the last 

section, we can derive the Hamiltonian from the Lagran-
gian in Eq. (3) as  

  (8) 

where the canonical momenta conjugate to the coordinates 

(r, q, t) have been denoted by (pr, pq, pt), and p represents 

the kinetic momentum given by . 

For the synchronous particle, p is reduced to the design ki-

netic momentum 

               (9) 

where the total energy Ws of the synchronous particle in-

creases according to 

          (10) 

with the synchronous phase defined by 

                      (11) 

In the present paper, ys is assumed to be constant from the 

entrance to the exit of the DTL. The Coulomb potential fsc 

satisfies the Poisson equation while the particle distribution 

function in phase space obeys the Vlasov equation. The ca-

nonical equations of particle motion in the DTL can be ob-

tained from the Hamiltonian HDTL in Eq. (8) together with 

the external field potentials given by Eqs. (6) and (7). 

We now expand the square root in Eq. (8) into a power 

series and retain only low-order terms under the assump-
tion that p is much greater than the transverse momenta: 

  (12) 

The momentum p can also be expanded about the synchro-

nous value ps as 

 (13) 

where –DW is the energy deviation from the synchronous 

value Ws; namely, For later convenience, 

we transform the longitudinal canonical variables (t, pt) to 

the relative time and energy (Dt, –DW), employing the gen-

erating function 

        (14) 

The transformed Hamiltonian is 

 

(15) 

where we have ignored the fourth and higher order terms. 
The nonlinear Hamiltonian in Eq. (15) includes many nat-

ural synchro-betatron coupling terms that may give rise to 

non-negligible dynamic effects under certain conditions. 

For instance, the term proportional to the third-order prod-

uct  yields the energy-dependent modulation of 

the transverse focusing force (the chromatic effect). The 

strict period of the longitudinal driving force is no longer a 

single cell structure but determined by the transverse mag-

netic lattice when the coupling is strong. The possible max-

imum synchrotron phase advance per cell may then be lim-

ited to avoid resonance. 

LINEAR MODEL 

The linear dynamics is most important in practice. Since 

the radial coordinate r of any particle is generally much less 

than the cell length , we have , which allows us 

to put  and . Substitut-

ing these relations in Eq. (15) and dropping all nonlinear 

terms (except for the space-charge potential), we eventu-

ally reach the Hamiltonian 
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                (16) 

           

where –G(z) is the z-dependent step function representing 

the field gradient of the quadrupole magnet along the beam 

line. Equation (16) is somewhat simplified by introducing 

the new radial canonical variables  generated by 

            (17) 

After the transformation, the Hamiltonian takes the form 

 

(18) 

where  has been replaced by r for brevity because , 

and  is the synchrotron phase advance defined by 

                     (19) 

for a negative synchronous phase ( ). Scaling the 

variables, we can further simplify the Hamiltonian to 

 (20) 

where the spatial coordinates are , the 

canonical momenta conjugate to these coordinates are 

, and we have disregarded the small longitudi-

nal tune shift due to rf acceleration.  

ANALOGY WITH PAUL ION TRAP 

It is possible to confine a large number of ions in a com-

pact Paul trap using electric potentials [2]. The collective 

motion of an ion plasma stored in a Paul trap can be shown 

physically equivalent to that of a charged-particle beam 

traveling in an alternating-gradient transport channel [3]. 

Since the plasma motion is non-relativistic, the Lagrangian

 

in the time domain can be written as 

 (21) 

where the dot mark stands for time derivative. In a regular 

Paul ion trap, no magnetic field is employed which means 

that we can simply put . The scalar poten-

tial includes the contributions from the space-charge inter-

action (fsc) and external electric fields for ion confinement 

(fext). Then, the Hamiltonian derived from the Lagrangian 
in Eq. (21) takes the very simple form as 

    (22) 

fext can be divided into the transverse and longitudinal po-

tential components, i.e., . For the transverse 

plasma focusing, we utilize the rf quadrupole potential 

 where r0 is the radius of the trap 

aperture, and  corresponds to the amplitude of the rf 

voltages on the four quadrupole rods placed symmetrically 

around the trap axis. The axial ion confinement is achieved 

by applying DC or AC voltages to the separate quadrupole 

sections at both ends. Choosing a proper mechanical design, 

we can make the axial potential well approximately para-

bolic; namely,  where V|| is related to 

the voltages on the end sections, and  is the characteris-

tic distance depending on the trap design. Substituting 

these potentials in Eq. (22) and scaling the variables, we 

obtain 

 (23) 

where  with lLPT being the wavelength of 

the operating rf field, and the independent variable is 

. The synchrotron phase advance has been defined 

here as 

                       (24) 

Note that V|| is a time-dependent function if we use an rf 

voltage for axial ion confinement. Apart from the details of 

the coefficients,  in Eq. (23) is identical to  in 

Eq. (20). What happens in the former dynamical system, 

therefore, also happens in the latter, which indicates that 

the compact ion trap can be employed for the fundamental 

study of beam dynamics in DTLs. 
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