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Abstract

Gridless symplectic methods for self-consistent modeling
= of space charge in intense beams possess several advantages
;4 over traditional momentum-conserving particle-in-cell meth-
E ods, including the absence of numerical grid heating and
£ the presence of an underlying multi-particle Hamiltonian.
_;Despite these advantages, there remains evidence of irre-
o versible entropy growth due to numerical particle noise. For
g a class of such algorithms, a first-principles kinetic model
§ of the numerical particle noise is obtained and applied to
‘S gain insight into noise-induced entropy growth and thermal
§ relaxation.

of the work

INTRODUCTION

Distinguishing between physical and numerical emittance
growth observed in long-term tracking of beams with space
8 charge is critical to understanding beam performance at high
= intensities. Numerical emittance growth has been modeled
f as a collisional increase of the beam phase space volume
2 driven by random noise caused by the use of a small num-
% ber of macroparticles, and intimately related to the beam
2 entropy [1]. Recently, several authors have developed meth-
% ods for multiparticle tracking (in plasmas or beams) using
zvariational or explicitly symplectic algorithms designed to
< preserve the geometric properties of the self-consistent equa-
3 tions of motion [2—4]. The multi-particle symplectic algo-
& rithm described in [4] is sufficiently simple that field fluctua-
© tions and emittance growth on a single numerical step can be
§ studied analytically [5]. In this paper, we develop a kinetic
Q
.2 formalism to better understand the dynamical evolution of
< particle noise in this and similar algorithms.

P
& SYMPLECTIC SPECTRAL ALGORITHM

We extend the algorithm described in Section III of [4] to
treat the Poisson equation in a general bounded domain Q c
2 R? (d < 2) with conducting boundary dQ. The symplectic
& map describing a numerical step in the path length coordinate
£t is performed by applying second-order operator splitting
5 to the following multi-particle Hamiltonian:
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g Here H,, is the single-particle Hamiltonian in the external
=~ applied fields, N denotes the number of simulation particles,
Q . . . .

£ and G denotes a two-body interaction potential, given by:
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where M denotes the number of computed modes and 7 is
a space charge intensity parameter. The smooth functions
e; (I =1,2,...) form an orthonormal basis for the space of
square-integrable functions on the domain €, and satisfy:
V2€1 = llel, = O,

ellsq (4, <0). 3

It follows from (1-3) that each particle moves in response to
a space charge potential U satisfying the Poisson equation:

V2U = -p, Ulyg =0, “
where p is a particle-based approximation to the beam den-
sity, given by taking the first M modes:

M n N
p = Z ple, pl= N Ze,(rj)_ 5)
=1 j=1

Due to the factorized form of the interaction (2), the compu-
tational complexity of each timestep is ~ O(NM).

STATISTICAL APPROACH

Neglecting the error due to finite timestep, and holding
the number of modes M fixed, the system of particles is
described by the N-body Hamiltonian (1). For simplicity,
consider a constant focusing system, so that H,,; in (1) is
independent of 7. Assume that initial particle coordinates
z; = (7,pj),Jj = 1,...,N are randomly sampled from a
probability density f, on the single-particle phase space.
The joint probability density on the N-body phase space
describing the particles at ¢ = 0 is:

N
Py(zi 2y 0) = [ [ fo(z))- (6)
j=1

The evolution of the joint probability density is governed by
the Liouville equation dPy/dt + {Py, Hy} = 0, and we are
interested in the single-particle density function f:

f(z,1) = fPN(z, 20, 2n D)dzy .. dzyy. @)
This can be obtained from the BBGKY hierarchy obtained
from (1), or by studying the Klimontovich density:

1 N
fk@n =5, 16(z—z,-(t)), ®)
=

where (zy(t), ..., zx(t)) is an orbit of (1) with random initial
condition sampled from (6). It follows that f = E[fx].
Given any density function % on the single-particle phase
space, we define a single-particle Hamiltonian Hy,x[h] by:
Hyplh] = Hex + Hsc[R], (9a)
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where Hg[h] is the mean-field potential associated with £,
given in terms of the interaction (2) by:

)= [ GG 7
It follows from (1) and Hamilton’s equations that fx in (8)
satisfies:

Ik

TN {fx- Hurlfx]} =

Note that (10) is interpreted to hold after integrating against
a smooth test function of compact support [6].

KINETIC EQUATIONS

We desire an equation for the single-particle density f.
Denote f = E[fx] and 8f = fx — f. It follows from (10) that:

Hgclh "d7', Pe Q. (9b)

(10)

O s\ Hyrlf ) = BHsclsf 150, (1)
Note that (11) corresponds to the lowest-order equation in
the BBGKY hierarchy. It is exact, but it is not closed due to
the appearance of &f.

The hierarchy can be closed [7, 8] by noting that for long-
range interactions, 8f ~ O(I/Jﬁ). Defining g = Jﬁ&f,
subtracting (10) from (11), and evaluating the resulting equa-
tion for g to leading order in 1/N gives the coupled pair of
kinetic equations:

@ 1

0g
+{g Hyrlf1} +{f, Hsclg

(12a)

I} = (12b)

where g is the Gaussian random field satisfying at r = O:

—Jfolz

The system (12) is our fundamental model. In the limit
N — oo, we recover the Vlasov equation for the interaction
(2). The term on the right-hand side of (12a) describes the
effect of the fluctuation g associated with the initial ran-
dom sampling, which propagates according to the linearized
Vlasov equation (12b). The statistics of g follow from (6).

E[go] =0, E[go(2)g0(z)] = 8(z =2 )fp(2)

Perturbation Around Vlasov Equilibrium

Let f; denote a stationary solution of (12a) with N - oo
(a Vlasov equilibrium). We analyze (12) perturbatively by
taking f = f] + %fz +..and g =g + %82 + .... Using
these expressions in (12) and equating terms of like order
in 1/N gives a sequence of linear equations for the f;, g;,
j = 1,2, ... describing deviations from Vlasov equilibrium of
successively higher order in 1/N. In particular, let L denote
the linear operator:

h:{h,HMF[fl]}+{f],HSC[h]}. (13)
Then the leading correction f5 is obtained by solving:
a
% + Lf, = E{Hgclg11, 81}, agt +Lg, =0, (14)
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with initial conditions f, = 0 and g; = gg atz = 0.

In some cases, the solution of the rightmost equation
in (14) is known explicitly. For a clear 1D example with
applications to particle noise, see [9]. In this case, we write

g1 (t) = e"'Lg,, suppressing the dependence on z. Then f,
is given by:
t
f(0) = [ e B{Hgcle ™hgo) e rggldT.  (15)

Energy, Entropy, and Observables

Under the assumption that H,, is independent of ¢, the
Hamiltonian (1) is an invariant of N-body motion. Taking
the limit Hy /N as N — oo gives the statistical energy:

G(F, 7)f(Z)dzd7 .

Q = fHext(Z) dZ + 5 If
Likewise, the Boltzmann entropy is defined as [1]:

S = —kg [ f(2) Inf(2)dz

Using (14), we obtain the following expression for the growth
rate of the beam entropy, valid to first order in 1/N:

as
dt

If ¢ is a function on the single-particle phase space, we let

(¢) = £ XN, $(z). Then E[($)] = [ p(2)f (2)dz

RELAXATION TO EQUILIBRIUM

The unique f maximizing (17) for fixed (16) is the self-
consistent Boltzmann distribution f,, o e Murlleq) ksT e
study relaxation to f,, for a beam initially described by a
self-consistent waterbag distribution of the form:

Jo < ©(Hy — Hyplfol)

in a constant-focusing channel Hey, = 5 (p2 +p2) + 3k2 (x% +

y2). Note that (19) is a stationary solution of (12a) in the
limit N — co. A 2.5MeV proton beam with 120 mA current
is used, with k and H,y chosen to give €, , = €, , = 0.6 um
and 0, = o, = 3.8 mm. 5-20K particles 1n1t1ally sampled
from (19) are tracked with space charge using 128 x 128
spectral modes in a rectangular domain Q of side 3.4 cm.

To study relaxation of the distribution, we use a momen-
tum kurtosis parameter, as used in [10]:

(16)

a7

e Lgo)Infidz. (18)

k
= NB IE{HSC[e gol,

19)

(p2) + (p?)
2 9

P+ )
© 2(kgT)?
where 1 = 0.21 for f (waterbag) and x = 1 for f,, (Boltz-
mann). Fig. 1 shows the evolution of % as a function of ¢ (in
betatron periods L = 27 /k) for N = 5K. The growth to sat-
uration is reasonably described by x (¢) = 1 — e t/T(1 - Ko)
for relaxation time T = 4,750 (blue). Fig. 2 illustrates the
initial and final particle distributions in momentum space.
The relaxation rate is given in terms of the beam moments
near ¢t = 0 by:

1 1 1 d " 2 d
o1 2 2
, I—K((kB ety (U )df@x})f_o
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% where we have used the isotropy of the momentum distribu-
g tion. Using (14-15), one may obtain an expression for the
Z rate of change of an observable ¢ to leading order in 1/N:

d

1
0| =5 JE@. Hsclgol @)go(@)dz.

(21
t=0

Using the expression for g, and applying (2) gives:

M
G0N T SO0 (her—get )z 22

t=0
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S where pl, denotes the coefficient of mode / in the initial
2 spatial density. Using (22) in the expression for 1/t gives
§ a contribution from each spectral mode that scales linearly
& with space charge intensity n and inversely with the number
Z of simulation particles N. The prediction that T o« N is
E consistent with numerical tracking, as shown in Fig. 3.
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ZFigure 1: Evolution of (20) showing relaxation of a waterbag
. beam to Boltzmann equilibrium in a constant-focusing chan-
nel in the presence of numerical particle noise.
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g Figure 2: Initial (left) and final (right) distributions in mo-
8 mentum space, illustrating the transition from waterbag to
2 Boltzmann equilibrium due to numerical particle noise.

CONCLUSION

A kinetic formalism was developed to describe particle
z'noise in a gridless multi-symplectic space charge algorithm
2 [4], resulting in a generalized Lenard-Balescu model with
£ long-range interaction (2). In a constant focusing channel,
-2 we observe relaxation of a beam initialized in a waterbag
‘éVlasov equilibrium to a Boltzmann (thermal) equilibrium.
o
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Figure 3: Comparison of kurtosis evolution for N = 5K,
10K, 20K. Slope of each fitted green curve gives the relax-
ation rate 1/, illustrating that 7 scales linearly with N.

The relaxation rate, which scales as 1/N, could be evaluated
explicitly in special cases where solution of the linearized
Vlasov equation about the equilibrium is known exactly
(such as [9]). This is a topic of future research.
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