Benson Stephen
MOPC23
Generating Super-Gaussian distribution and uniform sliced energy spread bunch for EIC strong hadron cooling
110
Strong Hadron Cooling (SHC), utilizing the coherent electron cooling scheme, has been extensively investigated for the Electron Ion Collider (EIC). Throughout our cooling optimization studies, we realized that a Super-Gaussian electron bunch offers enhanced performance in comparison to a Gaussian bunch. Our approach involves initiating the electron beam distribution in a double peak form, transitioning them into a Super-Gaussian distribution due to the longitudinal space charge. Subsequently, a chicane within the linac section compresses the bunch to meet the required bunch length. We tuned a third harmonic cavity amplitude to reduce the nonlinear term of the chicane. Moreover, given the low initial current leading to a small but non-uniform slice energy spread, we evaluated utilizing laser heating techniques to achieve a uniformly distributed slice energy spread. In this report, we discuss the concepts and simulation results.
  • E. Wang, W. Bergan
    Brookhaven National Laboratory
  • J. Qiang
    Lawrence Berkeley National Laboratory
  • S. Benson
    Thomas Jefferson National Accelerator Facility
Paper: MOPC23
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC23
About:  Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPC67
The EIC accelerator: design highlights and project status
214
The design of the electron-ion collider (EIC) at Brookhaven National Laboratory is well underway, aiming at a peak electron-proton luminosity of 10e+34 cm^-1·sec^-1. This high luminosity, the wide center-of-mass energy range from 29 to 141 GeV (e-p) and the high level of polarization require innovative solutions to maximize the performance of the machine, which makes the EIC one of the most challenging accelerator projects to date. The complexity of the EIC will be discussed, and the project status and plans will be presented.
  • C. Montag, A. Zaltsman, A. Fedotov, B. Podobedov, B. Parker, C. Folz, C. Liu, D. Marx, D. Weiss, D. Xu, D. Kayran, D. Holmes, E. Aschenauer, E. Wang, F. Willeke, F. Meot, G. Wang, G. Mahler, G. Robert-Demolaize, H. Huang, H. Lovelace III, H. Witte, I. Pinayev, J. Berg, J. Kewisch, J. Tuozzolo, K. Smith, K. Drees, M. Sangroula, M. Blaskiewicz, M. Minty, Q. Wu, R. Gupta, R. Than, S. Seletskiy, S. Peggs, S. Tepikian, S. Nayak, W. Xu, W. Bergan, W. Fischer, X. Gu, Y. Li, Y. Luo, Z. Conway
    Brookhaven National Laboratory
  • A. Blednykh, C. Hetzel, D. Gassner, J. Jamilkowski, N. Tsoupas, P. Baxevanis, S. Nagaitsev, S. Verdu-Andres, V. Ptitsyn, V. Ranjbar, V. Shmakova
    Brookhaven National Laboratory (BNL)
  • A. Seryi, B. Gamage, E. Nissen, E. Daly, K. Deitrick, R. Rimmer, S. Philip, S. Benson, T. Michalski, T. Satogata
    Thomas Jefferson National Accelerator Facility
  • D. Sagan, G. Hoffstaetter, J. Unger, M. Signorelli
    Cornell University (CLASSE)
  • E. Gianfelice-Wendt
    Fermi National Accelerator Laboratory
  • F. Lin, V. Morozov
    Oak Ridge National Laboratory
  • G. Stupakov
    xLight Incorporated
  • J. Qiang
    Lawrence Berkeley National Laboratory
  • M. Sullivan, Y. Cai, Y. Nosochkov
    SLAC National Accelerator Laboratory
  • Y. Hao
    Facility for Rare Isotope Beams
Paper: MOPC67
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC67
About:  Received: 07 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPC43
Optimization of cooling distribution of the EIC SHC cooler ERL
1104
The Electron-Ion Collider (EIC) Hadron Storage Ring (HSR) will use strong hadron cooling to maintain the beam brightness and high luminosity during long collision experiments. An Energy Recovery Linac is used to deliver the high-current high-brightness electron beam for cooling. For the best cooling effect, the electron beam requires low emittance, small energy spread, and uniform longitudinal distribution. In this work, we simulate and optimize the longitudinal laser-beam distribution shaping at the photo-cathode, modeling space charge forces accurately. Machine parameters such as RF cavity phases are optimized in conjunction with the beam distribution using a genetic optimizer. We demonstrate the improvement to the cooling distribution in key parameters.
  • N. Wang
    Cornell University
  • C. Mayes
    SLAC National Accelerator Laboratory
  • C. Gulliford
    Xelera Research LLC
  • D. Sagan, G. Hoffstaetter
    Cornell University (CLASSE)
  • E. Wang, W. Bergan
    Brookhaven National Laboratory
  • I. Neththikumara, K. Deitrick, S. Benson, T. Satogata
    Thomas Jefferson National Accelerator Facility
  • N. Sereno
    Argonne National Laboratory
Paper: TUPC43
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC43
About:  Received: 15 May 2024 — Revised: 22 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPC45
A preliminary feasibility study on multi-cavity cryomodule integration for the Electron Ion Collider energy recover linac cooler
1111
The Electron-Ion Collider (EIC) is a cutting-edge accelerator designed to collide highly polarized electrons and ions. For enhanced luminosity, the ion beam is cooled via an electron beam sourced from an energy recovery linac (ERL). The current ERL design accommodates one RF cavity per cryomodule, presenting both beam transport and cost-related challenges. This study investigates the feasibility of reducing the cavity size to accommodate two cavities within a single cryomodule. We analyze two compact cavity design options through frequency scaling, assuming constant loaded quality factor Q and R/Q scaling proportional to the square of the frequency ratio. Our analytical and tracking Beam BreakUp (BBU) model predicts the threshold current for each option. While a smaller cavity footprint is advantageous, maintaining sufficient damping of Higher Order Modes (HOMs) is crucial. We compare the HOM damping effectiveness of the proposed compact design to the existing configuration, which achieves sufficient damping within a slightly larger footprint.
  • S. Setiniyaz, I. Neththikumara, J. Guo, K. Deitrick, T. Satogata, S. Benson
    Thomas Jefferson National Accelerator Facility
  • C. Mayes
    SLAC National Accelerator Laboratory
  • C. Gulliford, N. Taylor
    Xelera Research LLC
  • N. Sereno
    Argonne National Laboratory
Paper: TUPC45
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC45
About:  Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
WEAD2
Orbital angular momentum beams research using a free-electron laser oscillator
1885
Orbital angular momentum (OAM) photon beams are excellent tools for non-contact optical manipulation of matter in a broad photon energy range. A free-electron laser (FEL) oscillator is well-suited for studying OAM beams with various features including a wide spectral coverage, wavelength tunability, two-color lasing, etc. Here, we report the first experimental demonstration of superposed OAM beams from an oscillator FEL. Lasing at around 458 nm, we have generated superposed OAM beams up to the fourth order as a superposition of two pure OAM modes with opposite helicities. These generated beams have a high beam quality, a high degree of circular polarization, and high power. Using external rf modulation with frequencies from 1 to 30 Hz, we also developed a pulsed mode operation of the OAM beams with a highly reproducible temporal structure. FEL operation showcased in this work can be extended to higher photon energies, e.g. using a future x-ray FEL oscillator. The operation of such an OAM FEL also paves the way for the generation of OAM gamma-ray beams via Compton scattering.
  • P. Liu
    Argonne National Laboratory
  • J. Yan, S. Mikhailov, V. Popov, Y. Wu
    Duke University
  • A. Afanasev
    George Washington University
  • S. Benson
    Thomas Jefferson National Accelerator Facility
  • H. Hao
    Oak Ridge National Laboratory
Slides: WEAD2
Paper: WEAD2
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEAD2
About:  Received: 14 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THYD1
Coherent electron cooling physics for the EIC
2937
In order to prevent emittance growth during long stores of the proton beam at the future Electron-Ion Collider (EIC), we need to have some mechanism to provide fast cooling of the dense proton beams. One promising method is coherent electron cooling (CeC), which uses an electron beam to both ``measure'' the positions of protons within the bunch and then apply energy kicks which tend to reduce their longitudinal and transverse actions. In this work, we discuss the underlying physics of this process. We then discuss simulations which constrain the electrons to move only longitudinally in order to perform fast optimizations and long-term tracking of the bunch evolution, and benchmark these results against fully 3D codes. Additionally, we discuss practical challenges, including the necessity of a high-quality electron beam and sub-micron alignment of the electrons and protons.
  • W. Bergan, D. Xu, E. Wang, G. Wang, J. Ma, M. Blaskiewicz
    Brookhaven National Laboratory
  • C. Mayes
    SLAC National Accelerator Laboratory
  • C. Gulliford, J. Conway, N. Taylor
    Xelera Research LLC
  • G. Stupakov
    xLight Incorporated
  • J. Qiang
    Lawrence Berkeley National Laboratory
  • K. Deitrick, S. Benson
    Thomas Jefferson National Accelerator Facility
  • N. Wang
    Cornell University
  • P. Baxevanis
    Brookhaven National Laboratory (BNL)
Slides: THYD1
Paper: THYD1
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THYD1
About:  Received: 15 May 2024 — Revised: 16 May 2024 — Accepted: 16 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPC40
Development of an ERL for coherent electron cooling at the Electron-Ion Collider
3086
The Electron-Ion Collider (EIC) is currently under development to be built at Brookhaven National Lab and requires cooling during collisions in order to preserve the quality of the hadron beam despite degradation due to intra-beam scattering and beam-beam effect. An Energy Recovery Linac (ERL) is being designed to deliver the necessary electron beam for Coherent electron Cooling (CeC) of the hadron beam, with an electron bunch charge of 1 nC and an average current of 100 mA; two modes of operation are being developed for 150 and 55 MeV electrons, corresponding to 275 and 100 GeV protons. The injector of this Strong Hadron Cooler ERL (SHC-ERL) is shared with the Precooler ERL, which cools lower energy proton beams via bunched beam cooling, as used in the Low Energy RHIC electron Cooling (LEReC). This paper reviews the current state of the design.
  • K. Deitrick, I. Neththikumara, S. Setiniyaz, S. Benson, T. Satogata
    Thomas Jefferson National Accelerator Facility
  • A. Fedotov, D. Xu, D. Kayran, E. Wang, W. Bergan
    Brookhaven National Laboratory
  • B. Dunham, C. Mayes
    SLAC National Accelerator Laboratory
  • C. Gulliford, J. Conway, K. Smolenski, N. Taylor, R. Eichhorn
    Xelera Research LLC
  • N. Sereno
    Argonne National Laboratory
  • N. Wang
    Cornell University
  • V. Kostroun
    Cornell University (CLASSE)
Paper: THPC40
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPC40
About:  Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPS32
Ultrafast high-voltage kicker system hardware for ion clearing gaps
3809
Ionization scattering of electron beams with residual gas molecules causes ion trapping in electron rings, both in a collider and electron cooling system. These trapped ions may cause emittance growth, tune shift, halo formation, and coherent coupled bunch instabilities. In order to clear the ions and prevent them from accumulating turn after turn, the gaps in a temporal structure of the beam are typically used. Typically, the gap in the bunch train has a length of a few percent of the ring circumference. In those regions, the extraction electrodes with high pulsed voltages are introduced. In this paper, we present the design consideration and initial test results of the high-voltage pulsed kicker hardware that includes vacuum device and pulsed voltage driver, capable of achieving over 3 kV of deflecting voltage amplitude, rise and fall times of less than 10 ns, 100 ns flat-top duration at 1.4 MHz repetition rate.
  • A. Smirnov, R. Agustsson, S. Kutsaev
    RadiaBeam
  • A. Smirnov, E. Ivanov
    RadiaBeam Technologies
  • G. Park, H. Wang, S. Zhang, S. Benson
    Thomas Jefferson National Accelerator Facility
Paper: THPS32
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPS32
About:  Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote