Alicia Hofler (Thomas Jefferson National Accelerator Facility)
MOPC52
Toward a long-lifetime polarized photoelectron gun for the Ce+BAF positron source
176
The addition of spin-polarized, continuous-wave (c.w.) positron beams to the 12 GeV Continuous Electron Beam Accelerator Facility (CEBAF) would provide a significant capability to the experimental nuclear physics program at Jefferson Lab. Based on bremsstrahlung and pair-production in a high-Z target, the positron source requires a 120 MeV spin-polarized c.w. electron beam of several milliamperes. While the beam dynamics of the high-current electron beam are tenable, sustaining this current for weeks of user operations requires an unprecedented charge lifetime from a high-polarization GaAs-based photocathode. A promising approach to exceed the kilocoulomb charge lifetime barrier is reducing the ion back-bombardment fluence at the photocathode. By increasing the laser size and managing the emittance growth with an adequate cathode/anode design, significantly enhanced charge lifetime may be achieved. Based upon a new simulation model that qualitatively explains the lifetime data previously measured at different spot sizes, we describe the practical implications on the parameter space available for a kilocoulomb-lifetime polarized photogun design.
  • M. Bruker, A. Hofler, C. Hernandez-Garcia, G. Palacios Serrano, J. Grames
    Thomas Jefferson National Accelerator Facility
Paper: MOPC52
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC52
About:  Received: 15 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote