Edward Daly (Thomas Jefferson National Accelerator Facility)
MOPC67
The EIC accelerator: design highlights and project status
214
The design of the electron-ion collider (EIC) at Brookhaven National Laboratory is well underway, aiming at a peak electron-proton luminosity of 10e+34 cm^-1·sec^-1. This high luminosity, the wide center-of-mass energy range from 29 to 141 GeV (e-p) and the high level of polarization require innovative solutions to maximize the performance of the machine, which makes the EIC one of the most challenging accelerator projects to date. The complexity of the EIC will be discussed, and the project status and plans will be presented.
  • C. Montag, A. Zaltsman, A. Fedotov, B. Podobedov, B. Parker, C. Folz, C. Liu, D. Marx, D. Weiss, D. Xu, D. Kayran, D. Holmes, E. Aschenauer, E. Wang, F. Willeke, F. Meot, G. Wang, G. Mahler, G. Robert-Demolaize, H. Huang, H. Lovelace III, H. Witte, I. Pinayev, J. Berg, J. Kewisch, J. Tuozzolo, K. Smith, K. Drees, M. Sangroula, M. Blaskiewicz, M. Minty, Q. Wu, R. Gupta, R. Than, S. Seletskiy, S. Peggs, S. Tepikian, S. Nayak, W. Xu, W. Bergan, W. Fischer, X. Gu, Y. Li, Y. Luo, Z. Conway
    Brookhaven National Laboratory
  • A. Blednykh, C. Hetzel, D. Gassner, J. Jamilkowski, N. Tsoupas, P. Baxevanis, S. Nagaitsev, S. Verdu-Andres, V. Ptitsyn, V. Ranjbar, V. Shmakova
    Brookhaven National Laboratory (BNL)
  • A. Seryi, B. Gamage, E. Nissen, E. Daly, K. Deitrick, R. Rimmer, S. Philip, S. Benson, T. Michalski, T. Satogata
    Thomas Jefferson National Accelerator Facility
  • D. Sagan, G. Hoffstaetter, J. Unger, M. Signorelli
    Cornell University (CLASSE)
  • E. Gianfelice-Wendt
    Fermi National Accelerator Laboratory
  • F. Lin, V. Morozov
    Oak Ridge National Laboratory
  • G. Stupakov
    xLight Incorporated
  • J. Qiang
    Lawrence Berkeley National Laboratory
  • M. Sullivan, Y. Cai, Y. Nosochkov
    SLAC National Accelerator Laboratory
  • Y. Hao
    Facility for Rare Isotope Beams
Paper: MOPC67
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC67
About:  Received: 07 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPS27
Progress towards the completion of the proton power upgrade project
1691
The Proton Power Upgrade project at the Spallation Neutron Source at Oak Ridge National Laboratory will increase the proton beam power capability from 1.4 to 2.8 MW. Upon completion in early 2025, 2 MW of beam power will be available for neutron production at the existing first target station (FTS) with the remaining beam power available for the future second target station (STS). The project has installed seven superconducting radio-frequency (RF) cryomodules and supporting RF power systems to increase the beam energy by 30% to 1.3 GeV, and the beam current will be increased by 50%. The injection and extraction region of the accumulator ring are being upgraded, and a new 2 MW mercury target has been developed along with supporting equipment for high-flow gas injection to mitigate cavitation and fatigue stress. The first four cryomodules and supporting systems were commissioned in 2022-2023 and supported neutron production at 1.05 GeV, 1.7 MW with high reliability. The first-article 2 MW target was operated successfully for approximately 4400 MW-Hours over two run periods. The long outage began in August 2023 for installation of the remaining technical equipment and construction of the Ring-to-Target Beam Transport tunnel stub that will enable connection to the STS without interrupting operation of the FTS. The upgrade is proceeding on-schedule and on-budget, and resumption of neutron production for the user program is planned for July 2024.
  • M. Champion, J. Galambos, J. Moss, M. Connell, M. Howell, S. Kim, N. Evans, K. White, G. Stephens
    Oak Ridge National Laboratory
  • G. Johns
    Los Alamos National Laboratory
  • E. Daly
    Thomas Jefferson National Accelerator Facility
  • D. Harding
    Fermi National Accelerator Laboratory
Paper: TUPS27
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPS27
About:  Received: 30 Apr 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote