Murilo Alves (Brazilian Synchrotron Light Laboratory)
SUPG014
Slow longitudinal mode 1 instability in electron storage rings with harmonic cavities
use link to access more material from this paper's primary code
Recent studies have investigated a longitudinal instability that may develop in electron storage rings featuring higher-harmonic cavities. The instability, also referred to as periodic transient beam loading (PTBL), manifests as a slow oscillation of bunch longitudinal profiles following a coupled-bunch mode 1 pattern. In this contribution, we applied a well-established theory of longitudinal mode-coupling to assess the thresholds for this instability. Results obtained through this semi-analytical approach, considering different storage ring and harmonic cavity parameters, were validated using macroparticle tracking and compared against other methods proposed in previous investigations.
  • M. Alves, F. de Sá
    Brazilian Synchrotron Light Laboratory
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPS32
About:  Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
SUPG064
Improvements of longitudinal stability with LLRF optimization at SIRIUS
use link to access more material from this paper's primary code
SIRIUS is a 4th generation synchrotron light source built and operated by the Brazilian Synchrotron Light Laboratory (LNLS). Recently, investigations of noise sources and the storage ring RF plant identification enabled a fine-tuning of the Digital Low-Level Radio Frequency (DLLRF) parameters. This paper presents the main improvements implemented, which include the mitigation of 60Hz noise from the LLRF Front End and the optimization of the control system parameters. Optimizations in the machine were based on an adjusted model of the SIRIUS storage ring RF plant. Tests with the model's parameters showed that the system's stability was strongly dependent on phase shifts introduced by nonlinearities from the high power RF sources. The new parameters significantly improved the control performance, increasing the bandwidth of the system and reducing longitudinal oscillations. BPM (Beam Position Monitor) and BbB (Bunch-by-Bunch) systems were employed to quantify longitudinal beam stability improvements.
  • D. Daminelli, A. Lima, F. Hoshino, M. Alves
    Brazilian Synchrotron Light Laboratory
  • M. Souza
    Estadual de Campinas University
  • V. Freire
    Centro Nacional de Pesquisa em Energia e Materiais
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG69
About:  Received: 14 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPS32
Slow longitudinal mode 1 instability in electron storage rings with harmonic cavities
782
Recent studies have investigated a longitudinal instability that may develop in electron storage rings featuring higher-harmonic cavities. The instability, also referred to as periodic transient beam loading (PTBL), manifests as a slow oscillation of bunch longitudinal profiles following a coupled-bunch mode 1 pattern. In this contribution, we applied a well-established theory of longitudinal mode-coupling to assess the thresholds for this instability. Results obtained through this semi-analytical approach, considering different storage ring and harmonic cavity parameters, were validated using macroparticle tracking and compared against other methods proposed in previous investigations.
  • M. Alves, F. de Sá
    Brazilian Synchrotron Light Laboratory
Paper: MOPS32
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPS32
About:  Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
WEPR42
Optimizing Touschek lifetime with overstretched bunch profiles in the MAX IV 1.5 GeV ring
2586
Synchrotron light sources often use higher-harmonic rf cavities for bunch lengthening to enhance Touschek lifetime. By adjusting the harmonic voltage, a flat-potential condition for the longitudinal voltage can be achieved, typically improving Touschek lifetime by 4 to 5 times. It is known that exceeding the flat-potential voltage results in double-peaked bunch profiles, referred to as overstretched conditions. Simulations suggest overstretched profiles can surpass flat-potential improvements on lifetime. In this paper we report on experimental results from the MAX IV 1.5 GeV storage ring, demonstrating a longer beam lifetime with a stable beam in overstretched conditions compared to the flat-potential case. Additionally, a remarkable agreement between measured bunch profiles using a streak camera and predictions from a semi-analytical equilibrium solver was obtained for all tested harmonic voltages.
  • M. Alves
    Brazilian Synchrotron Light Laboratory
  • A. Andersson, F. Cullinan
    MAX IV Laboratory
Paper: WEPR42
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPR42
About:  Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPC44
Broadband impedance induced heating proxy for operation at higher total current at SIRIUS
3090
SIRIUS, a brazilian 4th generation synchrotron light source, currently operates in top-up mode at 100mA in uniform fill. The main limiting factor for reaching higher currents is the temporary RF system in use. It is comprised of one PETRA 7-Cell cavity and two solid state amplifier towers that combined provide at most 120kW of power. By mid 2024, two superconducting RF cavities will replace the current cavity and two amplifier towers will be added to the system, allowing operation at higher currents. The design current of SIRIUS storage ring is 350mA, which can only be achieved once a third harmonic cavity is installed to lengthen the bunches to avoid excessive wake-induced heating of sensitive components. However, the installation of such cavity is not foreseen in the near future, which raises the question of which is the maximum current in uniform fill SIRIUS can be operated. This work will present some theoretical and experimental studies carried out to answer this question.
  • F. de Sá, G. Gomes, L. Liu, M. Alves, X. Resende
    Brazilian Synchrotron Light Laboratory
  • I. Carvalho de Almeida
    Centro Nacional de Pesquisa em Energia e Materiais
Paper: THPC44
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPC44
About:  Received: 15 May 2024 — Revised: 17 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPG69
Improvements of longitudinal stability with LLRF optimization at SIRIUS
3435
SIRIUS is a 4th generation synchrotron light source built and operated by the Brazilian Synchrotron Light Laboratory (LNLS). Recently, investigations of noise sources and the storage ring RF plant identification enabled a fine-tuning of the Digital Low-Level Radio Frequency (DLLRF) parameters. This paper presents the main improvements implemented, which include the mitigation of 60Hz noise from the LLRF Front End and the optimization of the control system parameters. Optimizations in the machine were based on an adjusted model of the SIRIUS storage ring RF plant. Tests with the model's parameters showed that the system's stability was strongly dependent on phase shifts introduced by nonlinearities from the high power RF sources. The new parameters significantly improved the control performance, increasing the bandwidth of the system and reducing longitudinal oscillations. BPM (Beam Position Monitor) and BbB (Bunch-by-Bunch) systems were employed to quantify longitudinal beam stability improvements.
  • D. Daminelli, A. Lima, F. Hoshino, M. Alves
    Brazilian Synchrotron Light Laboratory
  • M. Souza
    Estadual de Campinas University
  • V. Freire
    Centro Nacional de Pesquisa em Energia e Materiais
Paper: THPG69
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG69
About:  Received: 14 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPS18
Impact of Delta undulator on SIRIUS beam dynamics
3769
SIRIUS is the Brazilian 4th generation synchrotron light source. Currently, SIRIUS is in its Phase 1 stage of the project, with 14 beamlines proposed, some of which are already used by external users. Recently, the SABIÁ beamline underwent a transition where its commissioning insertion device (ID) was replaced by the beamline’s titular ID, an in-house developed DELTA undulator. This device offers versatility in generating various polarizations of light depending on the relative positions of the ID cassettes. However, each permissible configuration engenders distinct perturbations in beam dynamics, particularly affecting beam orbit, optics, and equilibrium parameters. This paper reports the impacts of the DELTA on beam dynamics and outlines the correction strategies implemented to mitigate these effects
  • G. Ascenção, F. de Sá, L. Lin, M. Velloso, M. Alves, X. Resende
    Brazilian Synchrotron Light Laboratory
Paper: THPS18
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPS18
About:  Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote