Roberto Corsini (European Organization for Nuclear Research)
MOPR93
Neutron production using compact linear electron accelerators
678
Many reactor-based neutron sources are planned to shut down in the near future, and this is despite the increasing demand for neutron beamlines for a wide range of scientific and industrial applications. Consequently, compact accelerator-based neutron sources arise as a competitive alternative that could meet the need for medium-flux fission or spallation sources. In this work, we explore the performance of compact electron accelerators as neutron drivers and propose a preliminary target design for an X-band electron-linac-based neutron source.
  • J. Olivares Herrador, A. Latina, W. Wuensch, R. Corsini, S. Stapnes
    European Organization for Nuclear Research
  • L. Wroe
    John Adams Institute
  • N. Fuster-Martinez, D. Esperante
    Instituto de Física Corpuscular
  • B. Gimeno-Martinez
    Val Space Consortium
Paper: MOPR93
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPR93
About:  Received: 14 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
WEPC03
Bubble-beam accelerators: breaking the paradigm
1957
Most particle accelerators utilize beams with a charge density concentrated in the center of the bunch in real 3-dimensional space and the 6-dimensional phase space. In this work, by enhancing the space-charge forces in the photo-cathode injector of the Compact Linear Electron Accelerator for Research (CLEAR) at CERN, we produce electron bunches with a “bubble-like” shape, with a charge density mostly concentrated on the outside shell. We demonstrate that the dynamics of such beams can be tailored to achieve stable uniformity in the coordinate and momentum transverse planes simultaneously. This would allow reaching a uniform dose distribution without a severe loss of particles which is of the great interest in the irradiation community. Additionally, we investigate the potential benefits of bubble-beams across several accelerator pillars: for driving light sources, for advanced acceleration technologies, and for particle colliders.
  • A. Malyzhenkov, A. Latina, L. Dyks, R. Corsini, W. Farabolini, A. Aksoy
    European Organization for Nuclear Research
  • P. Korysko
    Oxford University
  • P. Burrows, L. Tranchedone
    John Adams Institute
Paper: WEPC03
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPC03
About:  Received: 14 May 2024 — Revised: 19 May 2024 — Accepted: 24 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote