Yuanfang Xu (University of Science and Technology of China)
SUPC046
Study of the radiation field from multiple out-coupling holes in an infrared free electron laser oscillator
use link to access more material from this paper's primary code
A new infrared Free-Electron Laser (FEL) facility FELiChEM has been established as an experimental facility at the University of Science and Technology of China. It consists of two free electron laser oscillators which produce mid-infrared and far-infrared lasers covering the spectral range of 2-200 μm at the present stage. The output power is a crucial parameter for users, and it is usually achieved by an out-coupling hole located in the center of a cavity mirror. Nevertheless, the spectral gap phenomenon has been observed in FEL oscillators with partial waveguides as the output power is highly dependent on the mode configuration before the out-coupling mirror. Such power gaps have an adverse effect on experimental results since numerous experiments require continuous spectral scanning. In this paper, we propose the utilization of multiple out-coupling holes on the cavity mirror, instead of relying solely on a central out-coupling hole, to reduce the adverse impact of the spectral gap phenomenon.
  • M. Xia, N. Yang, Y. Xu, Z. Zhao, H. Li
    University of Science and Technology of China
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPG73
About:  Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPG73
Study of the radiation field from multiple out-coupling holes in an infrared free electron laser oscillator
435
A new infrared Free-Electron Laser (FEL) facility FELiChEM has been established as an experimental facility at the University of Science and Technology of China. It consists of two free electron laser oscillators which produce mid-infrared and far-infrared lasers covering the spectral range of 2-200 μm at the present stage. The output power is a crucial parameter for users, and it is usually achieved by an out-coupling hole located in the center of a cavity mirror. Nevertheless, the spectral gap phenomenon has been observed in FEL oscillators with partial waveguides as the output power is highly dependent on the mode configuration before the out-coupling mirror. Such power gaps have an adverse effect on experimental results since numerous experiments require continuous spectral scanning. In this paper, we propose the utilization of multiple out-coupling holes on the cavity mirror, instead of relying solely on a central out-coupling hole, to reduce the adverse impact of the spectral gap phenomenon.
  • M. Xia, H. Li, Y. Xu, Z. Zhao, N. Yang
    University of Science and Technology of China
Paper: MOPG73
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPG73
About:  Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote