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Abstract

We present a study of orbit jitter and emittance growth
in a long linac caused by misalignment of quadrupoles.
First, assuming a FODO lattice, we derive analytical for-
mulae for the RMS deviation of the orbit and the emittance
growth caused by random uncorrelated misalignments of
all quadrupoles. We then consider an alignment algorithm
based on minimization of BPM readings with a given BPM
resolution and finite mover steps.

1 INTRODUCTION

In this paper we study the emittance dilution of a beam
caused by quadrupole misalignments in a long linac. To
suppress the beam break-up instability an energy spread is
usually introduced in the beam. For the Next Linear Col-
lider (NLC) [1], the rms energy spread within the bunch
will be of order of 1%. Due to the lattice chromaticity, the
deflection of the beam by displaced quadrupoles results in
the dilution of the phase space and the growth of the pro-
jected emittance.

The effect of lattice misalignments has been previously
studied in many papers. A qualitative analysis and main
scalings were obtained in Ref. [2], and detailed studies
with intensive computer simulations are described in Refs.
[3, 4, 5]. The purpose of this paper is to develop a simple
model based on a FODO lattice approximation for the linac
which allows an analytic calculation of the emittance dilu-
tion. The model can be also generalized, to include a slow
variation of the lattice parameters, as well as variation of
both beam energy and the energy spread [6].

Throughout this paper we assume that the number of
quadrupoles in the linac is large,N � 1, and neglect terms
of the relative order ofN−1 in the calculations. For future
linear colliders with the center of mass energy in the range
of 1 TeV, typicallyN ∼ 103, andN−1 is indeed a small
number.
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Figure 1: FODO lattice of a linac. Beam positions are mea-
sured at the center of each quadrupole.
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Let us consider a FODO lattice with a cell lengthl and a
phase advanceµ per cell, consisting ofN thin quadrupoles
as shown in Fig. 1. The focal length of the quadrupoles is
equal to±F where the positive and negative values ofF
refer to the focusing and defocusing quadrupoles respec-
tively. The beam is injected in the linac at the center of the
first quadrupole, ats = 0, with the zero offset and angle,
and the beam emittance is measured at the center of the
last,N th, quadrupole. For the beam position (horizontal or
vertical) at the locations of the quadrupoles we will use the
notationx1, x2, . . . , xN−1, xN , and the orbit angle at the
center of thekth quadrupole is denoted byx′k. The initial
conditions for the orbit arex1 = x′1 = 0. Note that due to
our choice of positions, the derivative of the beta function,
and hence the Twiss parameterα, at all locations 1 through
N , are equal to zero.

We now assume that each quadrupole in the lattice is
misaligned in the transverse direction relative to the axis
of the linac byξi, (1 ≤ i ≤ N ), whereξi are random,
uncorrelatednumbers. Due to the deflection by misaligned
quadrupoles, the original straight orbit will be perturbed.
The offsetxi can be found as

xi =
∑
k<i

Rikθk, (1)

whereRik is the (1, 2) element of the transfer matrixR
andθi is the deflection angle resulting from the offset of
the ith quadrupole,θi = ±ξi/F , for the focusing and de-
focusing quadrupoles. We haveRik =

√
βiβk sin ∆ψik,

where the betatron phase advance∆ψik betweenkth and
ith quadrupoles (k < i) is ∆ψik = (1/2)(i− k)µ.

We will also need the orbit anglesx′i where the prime
denotes the derivative with respect to the longitudinal co-
ordinates. Forx′i we have

x′i =
∑
k≤i

Gikθk, (2)

whereGik, is the (2, 2) element of the transfer matrix,
Gik =

√
βk/βi cos ∆ψik, (note that, due to our choice,

αi = 0).

3 RMS VALUE FOR THE BEAM OFFSET

To characterize the deviation of the orbit from the linac
axis, we will calculate the average value〈x2

N 〉, where the
angular brackets denote averaging over all possible values
of ξ. We assume that the average offset〈ξi〉 vanishes, hence
〈xN〉 = 0.

For the lattice shown in Fig. 1 the deflection angleθk
due to the misalignedkth quadrupole is given byθk =

XX International Linac Conference, Monterey, California

269MOE03



(−1)kξk/F , and the beam offset at the end of the linac is

xN =
N−1∑
k=1

RNk(−1)k
ξk
F
. (3)

For the variance ofxN we have

〈x2
N〉 =

〈ξ2〉
F 2

N−1∑
l=1

R2
Nl, (4)

where we have used〈ξkξl〉 = 〈ξ2〉δkl, with 〈ξ2〉 being the
variance of the random variablesξi. To calculate the sum
in Eq. (4), one can averageR2

Nl over the betatron phase
valueR2

Nl → 1
4βNβl. One finds,

〈x2
N〉
βN

=
N〈ξ2〉
4F 2

(βmax + βmin) = 4N
〈ξ2〉
l

tan
µ

2
. (5)

We see that the rms value〈x2
N〉1/2 scales asN1/2, which

is a characteristic feature of the random walk motion.
In a similar fashion, one can find the rms angular spread

orbits 〈x′2N 〉1/2 at the end of the linac. Starting from the
general expression

x′N =
N∑
k=1

GNk(−1)k−1 ξk
F
, (6)

and performing the same averaging as for derivation of Eq.
(5), one finds〈x′2N 〉 = 〈x2

N〉/β2
N , where〈x2

N 〉 is given by
Eq. (5).

4 CHROMATIC EMITTANCE GROWTH

When the beam has a nonzero energy spread, due to the
chromaticity of the lattice, the misalignments cause an ef-
fective emittance growth of the beam [2]. We will calculate
the emittance increase, assuming that the beam energyE
and the relative energy spread in the beamδ are constant.
We will also assume that the resulting emittance growth is
much smaller than the initial emittance of the beam. In this
case, we can use the following formula for the final emit-
tance growth

∆ε =
1
2
[
β−1
N 〈(∆x− 〈∆x〉)

2〉ξδ

+ βN 〈(∆x′ − 〈∆x′〉)2〉ξδ
]
, (7)

where∆x and ∆x′ are the spread in the coordinate and
the angle within the bunch at the and of the linac, and the
angular brackets with the subscriptξδ denote a double av-
eraging: first, averaging over the random misalignment of
the quadrupoles and then averaging over the energy dis-
tribution function in the beam. We will assume that the
energy spread in the beamδ is so small, that one can use a
linear approximation for calculation of∆x and∆x′, ∆x =
δ · xNδ ≡ δ · ∂xN/∂δ and∆x′ = δ · x′Nδ ≡ δ · ∂x′N/∂δ.

Since〈ξi〉 = 0, hence〈∆x〉 = 〈∆x′〉 = 0. In this approxi-
mation Eq. (7) reduces to

∆ε =
1
2
δ2
(
β−1
N

〈
x2
Nδ

〉
+ βN

〈
x′

2
Nδ

〉)
, (8)

whereδ2 is the variance of the energy spread within the
beam.

To calculatexNδ andx′Nδ we need to take the derivatives
of Eqs. (3) and (6) with respect toδ. For a long linac, the
dominant contribution to∆ε comes from the dependence
of the phase advance∆ψik versus energy, so we need to
differentiate onlysin ∆ψik (or cos ∆ψik) terms in the sum.
Calculation gives

β−1
N

〈
x2
Nδ

〉
= βN

〈
x′

2
Nδ

〉
=

4
3
N3 〈ξ2〉

l
tan3 µ

2
. (9)

which gives for the emittance dilution

∆ε =
4
3
δ2N3 〈ξ2〉

l
tan3 µ

2
. (10)

As we see, the increase in the emittance scales with the
number of quadrupoles asN3.

In the above derivation, to find the dispersion of the beam
at the end of the linac, we explicitly differentiated Eq. (3)
with respect to the energy. One can use another formula for
computing∂xN/∂δ [6],

∂xN
∂δ

=
N−1∑
k=1

RNk(−1)k
xk − ξk
F

, (11)

that takes into account that the dispersion is generated due
to the offset of the particle relative to the center of the
quadrupole, and propagates downstream with the same ma-
trix elementRNk.

5 VERY LONG LINAC

Increasing the length of the linac and the number of
quadrupolesN brings us to the regime where Eq. (10) is
not valid any more. The transition occurs when the phase
advance over the length of the linac due to the energy vari-
ationδ becomes comparable toπ/2,Nδ ·dµ/dδ ∼ π/2. In
this case, the differential approximation∆x = δ · ∂xN/∂δ
that was used in Section 4 is not valid any more, and the
scaling∆ε ∝ N3 breaks down.

We can estimate the emittance dilution in this regime, us-
ing the following arguments. Let us denote bylc the deco-
herence length in the linac such that(lc/l)δ · dµ/dδ ∼ π/2
(l is the FODO cell length). When the beam passes the dis-
tancelc, due to filamentation, the betatron oscillations of
the beam are converted into the increased emittance, and
the subsequent motion becomes uncorrelated with the pre-
viously excited betatron oscillations. The emittance growth
on the distancelc is given by Eq. (10), in whichN = 2lc/l,

∆εc =
4
3
δ2

(
2lc
l

)3 〈ξ2〉
l

tan3 µ

2
≈ 〈ξ

2〉
l
√
δ2
. (12)
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The total emittance increase in the linac of lengthlL in this
regime is equal to∆εc multiplied by the number of coher-
ent distanceslL/lc in the linac

∆ε = ∆εc
lL
lc
∼ lL〈ξ2〉
l2 tan µ

2

∼ N〈ξ2〉
l tan µ

2

. (13)

Note that if the linac lengthlL < lc, the emittance dilu-
tion is reversible in principle – the initial beam emittance
can be recovered by taking out the dispersion generated by
the misaligned quadrupoles downstream of the linac. For
very long linacs, whenlL > lc, the emittance growth be-
comes irreversible due to the phase space filamentation.

6 ALIGNMENT WITH ACCOUNT OF
BPM ERRORS AND FINITE MOVER

STEPS

Measuring the beam position ateach quadrupole, with the
knowledge of the lattice functions, allows us to find the
quadrupole offsetsξi. Moving the quadrupoles by distance
−ξi would position them in the original state, and restore
the ideal lattice. Of course, in reality, there are many fac-
tors, such as wakefields and measurement errors, that do
not allow to perfectly align the lattice. Here we will study
two such effects: errors associated with the BPM measure-
ments, and finite step of the quadrupole movers.

Consider first the effect of BPM errors. Due to the finite
resolution of BPMs the measured vector of the beam trans-
verse offsetsXM = (xM1 . . . xMN ) differs from the exact
valuesX = (x1 . . . xN) by an error vectore,XM = X+e,
wheree = (e1 . . . eN ). The errors are small relative to the
measured values,|ei| � |xi|. We assume that the BPMs
are built in the quadrupoles, and the quadrupole displace-
mentξk also moves the center line of the BMP, so that BPM
reading isxMk = xk− ξk + ek. Using the measured offsets
xMk we infer the quadrupole offsetsζk from the following
equation

xMi + ζi =
i−1∑
k=1

Rik(−1)k
ζk
F
. (14)

Note that without errors,ek = 0, we would find from Eq.
(14) the correct valueζk = ξk. Measurement errorsek
cause the inferred values of the offsets differ from the true
ones,ζk 6= ξk.

We then align the lattice by moving the quadrupoles by
distance−ζk. After the alignment the corrected beam orbit
x̃i does not vanish:

x̃i =
i−1∑
k=1

Rik(−1)k
ξk − ζk
F

= xi − xMi − ζi = −ei + ξi − ζi. (15)

Since the quadrupoles after alignment are located atξk−ζk,
the beam offsetrelative to the center of the quadrupole,
x̃k − (ξk − ζk), is equal to−ek. This allows us to use

Eq. (11) to find the emittance dilution in the linac after the
alignment,

xNδ = −
N−1∑
k=0

RNk(−1)k−1 ek
F
. (16)

Assuming thatek are uncorrelated random numbers makes
the problem equivalent to the orbit equation (3) with the
result given by Eq. (5),

β−1
N

〈
x2
Nδ

〉
= 4N

〈e2〉
l

tan
µ

2
. (17)

We see that the rms value of the dispersion at the and of
the linac after alignment scales as

√
N . Calculating in a

similar way the variance of the derivativex′Nδ, gives the
chromatic emittance growth after alignment,

∆ε = 4Nδ2
〈e2〉
l

tan
µ

2
. (18)

Let us now assume that in addition to the BPM errors the
quadrupole movers have a finite step so that the final posi-
tion of the quadrupolesζk after alignment isξk − ζk + rk,
where as above,ζk is the offset inferred from the mea-
surements (and containing BPM errors), andrk is the
quadrupole movement error. Again, we assume thatrk are
random, uncorrelated numbers, and of course uncorrelated
with the BPM errorsek. For the beam orbit after alignment
we now have

x̃i = −ei + ξi − ζi +
i−1∑
k=1

Rikrk (19)

with the resulting emittance growth that is a combination
of Eqs. (18) and (10),

∆ε = 4Nδ2
〈e2〉
l

tan
µ

2
+

4
3
δ2N3 〈r2〉

l
tan3 µ

2
. (20)

From this equation, it follows that for a largeN , the con-
tribution of the movers errors becomes more important and
imposes tighter tolerances on the movers.
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