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Abstract ization of normal mode perturbations resulting from ini-
tial space-chargeonuniformities characteristic of intense
Yeam injectors. Past studies have employed analogous
techniques to estimate emittance increases resulting from
e thermalization of initial rms mismatches in the beam

Beams injected into a linear focusing channel typicall
have some degree of space-changauniformity. In gen-
eral, injected particle distributions with systematic charg

nonuniformities are not equilibria of the focusing channe nvelope and space-cham@nuniformities associated with

and launch a broad spectrum of coII_ect|ve modes. T.he%%mbining multiple beams and other processes|[1, 2, 3].
modes can phase-mix and have nonlinear wave-wave inter-

actions which, at high space-charge inttas, results in a 2 THEORETICAL MODEL

relaxation to a more thermal-like distribution characterizeqN | infinitelv | bunch —0
by a uniform density profile. This thermalization can trans- e analyze an infinitely long, unbunche/ = 0) non-

fer self-field energy from the initial Siwe-chargeonuni- relativistic beam composed of a single species of particles

formity to the local particle temperature, therebyincreasin%f massm and chargey propagating with constant axial

beam phase space area (emittance growth). In this pap 'Retic energyts. Continuc_)us radial_focusing is provided
we employ a simple kinetic model of a continuous fOCUSl_oy an_extern{al force that is pr02port|onal to the transverse
ing channel and build on previous work that applied systerﬁoord'nate’" Le., Foxy = —2&,kjx, Wherekg = const
energy and charge conservation[L, 2] to quantify emittands the betatron wavenumber of particle oscillations in the

growth associated with the collective thermalization of ar?pp”ed focusing field. For simplicity, we neglect particle

initial azimuthally symmetric, rms matched beam with acollisions and correlation effects, self-magnetic fields, and

radial density profile that is hollowed or peaked. This emit_emplo_y an electrostatic model anq describ_e the transverse
tance growth is shown to be surprisingly modest even f volution of the beam as a function of axial propagation

high beam intensities with significant radial structure in th Istance In terms of a single-particle d|str|but|o_n_ function
initial density profile. f that is a function ok, and the transverse positianand

anglex’ = dx/ds of a single particle. This evolution is

1 INTRODUCTION described by the Vlasov equation[2],
Experiments with high-current, heavy-ion injectors have {% + % : % - %—Z . %} flx,x',s)=0, (1)

observed significant space-chamgenuniformities emerg-
ing from the source. Sharp density peaks on the radi
edge of beam have been measured, but the local incoh
ent thermal spread of particle velocities (i.e., the particl
temperature) across the beam is anticipated to be fairly uni-
form since the beam is emitted from a constant temperature V3¢ = —drq /d2x’ f (2)
surface. When such a distribution is injected into a linear

transport channel, it will be far from an equilibrium cond|-Subject to the boundary conditiair — r,) — 0 at the
tion (i.e., particles out of local radial force balance), and . nducting pie radius — x| — r. — conpt
broad spectrum of collective modes will be launched. ucting pip lus = [x| = r, = St

The spatial average particle temperature of a heavy | If no particles are lost in the beam evolution, the Vlasov-
P ge p P Y 1Bhisson system possesses global constraints corresponding

beam emerging from an injector is typically measured ;
several times what one would infer from the source theart?) the conservation of system chargg and scaled energy

mal temperature~ 0.1eV) and subsequent beam envelopéU) per unit axial length,

Hnererr = x"?/2 4 k3,x* /2 + (q/2&)¢ is the single-
Brticle Hamiltonian and the self-field potentjakatisfies
e Poisson equation (CGS units here and henceforth)

compressions, witl, ~ 20eV whereT, ~ [¢2/(2R?)&. A\ q/d%/d%—’ F = const,

On the other hand, the radial change in potential energy

from beam center to edge §&\¢ ~ 2.25keV for a beam 1, k%o ) q

with line-charge densitx ~ 0.25C/m (A¢ ~ X/ (47¢p)). U (X5 + - (x7) + 2%, W = const. (3)

If even a small fraction of such space-charge energy is ther-

malized during collective relaxation, large temperature andere, W = [d?z |V¢|?/(87) is the self-field en-
emittance increases can result. ergy of the beam per unit axial length ang) =

In this paper, we employ conservation constraints to bet-d?x [d*z’ ¢ f)/([d*z [d*a’ f ) is a transverse statis-
ter estimate emittance increases from collective thermaical average of over the beam distributiofi Note that/

- " ormed under th _ fthe U.S. Depart includes both particle kinetic energy and the field energy of
*This work was performed under the auspices of the U.S. Departme . & .
of Energy by University of California at Lawrence Livermore Nationalme apphed and self-fields. These conservation laws follow

Laboratory and Lawrence Berkeley National Laboratory under contrafliréctly from Egs. (1)'(2) and provide powerful constraints
Nos. W-7405-Eng-48 and DE-AC03-76SF00098. on the nonlinear evolution of the system.
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Moment descriptions of the beam provide a simplifiedJsing these expressions, the Poisson equation (2) can be
understanding of beam transport. For an azimuthally synselved for the potentiab corresponding to the density pro-
metric beam /00 = 0), a statistical measure of the beanffile (5) and used to calculate the self-field enetjyas
edge radius? = 2(z2)1/2 is employed. Note thak is the , 1 (p+2)2h2  2(1—h)?
edge radius of a beam with uniformly distributed space- W = A {( L [ 1 T
charge. Any axisymmetric solution to the Vlasov-Possion P p

+

system will be consistent with the rms envelope equation[1}(p;4 2)h(1 — h)] o (p+2)(ph+4) 1 @
p+4 . (p+4)(ph+2)R '
PR pep_@_ S 4
ds? T Npott = R R3 ) It is convenient tadefinean average phase advance pa-

. . rametero for the density profile (5) in terms of an enve-
Here,Q = ¢)\/& = const is the self-field perveance a”dlope matched R’ = 0 = R”), rms equivalent beam with

€ = 4[(@*)(a"?) — (za')?]'/is an edge measure of the o, density f = 1) and the same perveana@)(and
rmsz-emittance of the beam and is a statistical measure g ittance ¢,) as the (possibly mismatched) beam with a

. / . . ui
the beam area in-2’ phase-space (i.e., beam quality). FOR, o niform density profilel{  1). Denoting the phase
general distributions,, is not constant and evolves accord-yqyance per unit axial length of transverse particle oscilla-
ing to the full Viasov-Poisson system. tions in the matched equivalent beam in the presence and

3 NONUNIFORM DENSITY PROFILE absence of space-charge (b)ando'(); we adapt a normal-
i - aﬁd = 2 _ 2
We examine an beam with an azimuthally symmetric radiaf €4 Space-charge parametgir, = \/ Fo Q/R?/kgo.

density profilen = [d2z’ f given by The limitso /oy — 0 ando /oy — 1 correspond to a cold,
» space-charge dominated beam and a warm, kinetic domi-
n(r) = ng [1 - lﬁh ([—b) } ;o 0<r<my, 5) nated beam, respectively. Note that this measure applies
’ ry <1 <1, only in an equivalent beam sense. In general, distributions
f consistent with the density profile (5) will not be equi-
Here, r, is the physical edge-radius of the beam, = libria (d/ds # 0) of the transport channel and will evolve

n(r = 0) is the on-axis{ = 0) beam density, and andp  leavingo ill defined.

are “hollowing” [0 < h < oo, h = n(r = ) /n(r = 0),

p > 0] and radial steepening parameters associated with 4 EMITTANCE GROWTH

the density nonuniformity. This density profile is illustratedi\e consider an initial beam distributighwith a density

in Fig. 1 for the steepening indgx= 2 and hollowing fac- profile given by Eq. (5) and aarbitrary “momentum” dis-
torsh = 1 (uniform), h = 1/2 (hollowed), andh» = 2  tributioninx’. Such an initial distributionis not, in general,
(peaked). The hollowing parametiihas rang® < » < 1  an equilibrium of the focusing channel and a spectrum of
for an on-axis hollowed beam afid< 1/h < 1 for an collective modes will be launched (depending on the full
on-axis peaked beam. The liniit— 1 corresponds to a initial phase-space Structure ff. These modes will phase-
uniform density beam ank, 1/h — 0 correspond to hol- mix, have nonlineaf wave-wave interactions, etc., driving
lowed and peaked beams with the density approaching zefiglaxation processes that have been observed in PIC simu-
on-axis and at the beam edge < 1), respectively. For |ations to cause the beam space-charge distribution to be-
large steepening index>> 1, the density gradient will be come more uniform for the case of high beam intensities.
significant only near the radial edge of the beam~(r;),  The conservation constraints (3) are employed to connect

and the density is uniform for = 1 regardless op. the parameters of an initial (subscript nonuniform den-
o sity beam withh # 0 with those of a final (subscript),
o, p=2shown azimuthally symmetric and rms envelope matched beam
(e el (R} = 0 = R7) with uniform density { = 1).
L/ Employing Egs. (4)-(7), conservation of charge (=
. h=1 Ay = A) and system energy/{ = Uy) can be combined
dendty into an single equation of constraint expressible as
0 iy (Ry/Ri)?—1  pL—h)[4+p+(3+p)h]
Fh:zihown), - N T— 1—(0i/00)> ~ (p+2)(p+4)(2+ph)?
X/rp,
Figure 1: Uniform, hollowed, and peaked density profiles. _ 1y, %% - %(RiR’-)’ (8)
p+4)(ph+2) R q ’
The beam line-charge densit¥)(and rms edge-radius
(R) are related to the parameters in Eq. (5) by Here,h andp are the hollowing factor and index of the ini-
° 5 [(ph +2) tial density profileg; /oy is the initial s@ce-charge inten-
A= /d T =TT | T, sity, and[&,/(2¢)\)](R:R})’ is a parameter that measures

the initial envelope mismatch of the beam. This nonlinear
R=20z2)V/? = (p+2)(ph +4) . (©) constraint equation can be solved numerically for fixed
(p+4)(ph+2) b p, 0i/oo and [Ey/(2¢N)](R; R;)’ to determine the ratio of
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final to initial rms radius of the bean®(;/ R;). Employing () can be expressed & = W — [d?z (11 + p2)n
the envelope equation (4), the ratio of final to initial beanwith y; » =const. Taking variation&p subject to the Pois-

emittance is expressible as son equation (2), one obtains to arbitrary ordefdn
cor _ Ry [(Ry/Ri)? — [1—(0:/00)?] SF /dz > s / 2 Vo]
— = . = - - + [d°z ———. (10
€wi Ri\/ (05/00)2 — Rgl/(k%()Ri) 9 T (q¢ — mx p2)dn x o (10)

Egs. (8) and (9) allow analysis of emittance growth fromThus, constrained extrema éf satisfyqp = p1x* + po,

the thermalization of initial spce-charg@monuniformities.  corresponding to a uniform density beam centered on-axis.
We numerically solve Egs. (8) and (9) to plot (Fig. 2)Variations about this extremum satisfy” > 0 and are

the growth in rms beam radius?¢/R;) and emittance second order in¢. Thus, the available electrostatic energy

(€xr/€x:) due to the relaxation of an initial rms matchedfor thermalization induced emittance increase is modest for

beam @, = 0 = R/) with nonuniform hollowed and any smooth density profile. This can be demonstrated for

peaked density profiles to a final uniform, matched proour specific example using equation (7) to phat' = W; —

file. Final to initial beam ratios are shown for hollowingW; with R; = R versesh and1/h for p = 2, 8 (Fig. 3).

index ofp = 2 and are plotted verses the “hollowing fac-

tors” h (hollow initial density) and. /h (peaked initial den-

sity) for families of o; /0 ranging fromo;/oy — 0 to

Hollowed ! Peaked

N =
o;/oo — 1. Growths are larger for the initially hollowed ~ OZ: 2
profile than the peaked profile and increase with stronger 5 'm | p=8
space-charge (smaller;/0;). However, the change in o N p=2
rms radius (B /R;) is small in all cases, even for strong o fp=2 | \

space-charge with strong hollowing (~ 0) and peaking Mmoo 1";;] ot
(1/h — 0) parameters. Moreover, the increases in beam;y e 3: Free energy verses hollowing factbrand1 /.
emittance, s /e;) are surprisingly modest (factor of 2 and
less) for intense beam parameters witlio, ~ 0.1 and It has been shown that the rms beam size and emittance
greater. At fixedo; /o and increasing steeping factpr undergo very smallecreasesn relaxation from a uniform

) density beam to thermal equilibrium over the full range of
8 P =2, Hollowed On-AXIs 1006 b) Pp=2 Peked On-Axis O'i/O'() ( Mln[exf/em] ~ 0.97 atO'i/O'() ~ 045)[4] Thus if
0il0p=0,01,02,..10 { one views the relaxation as a multi-step procedure using the
/0y =0 conservation constraints to connect the initial nonuniform
profile to a uniform profile and then a thermal profile, any
emittance growth will be experienced in the first step. This
result together with the variational argument above show
B : that the emittance growth results presented should be rela-

6i/0g = 0,025, 0,050, 0.075 (dashed| . 0ilgg=0.025,0.050, 0075 (dashed

O omoors SO0 Sheomonns cemes| tiVely insensitive to the form of the final distribution.
AN % R T e Finally, caveats should be given for validity of the theory.
N\ "*f‘]’°°;°'°25 First, the model assumes no generation of halo in the final
state and that the initial nonuniform beam can be perfectly
S -~_| rms envelope matched. Initial mismatches can lead to halo
R " production and provide a large source of free energy which,
if thermalized, can lead to significant emittance growth[1].
. Also, although the velocity space distributionis arbitrary in
and emittancee/c.;) versesh (a, hollowed beam) and o resent ?heory, choic}ésghat project onto broader gpec-
1/h (b, peaked beam). trums of modes will more rapidly phase mix and thermal-
similar modest growth factors are seen for hollowed beange. Small applied nonlinear fields tend to enhance this re-
for all but the most extreme hollowing factors ¢ 0.1 and laxation rate. Initial simulation results in a full AG lattice
less), and as expected, much less growth is seen for pealké consistent with model predictions presented here and
beams (closer to uniform). will be presented in future work.
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Figure 2: Ratio of final to initial rms beam siz& {/R;)
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