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Abstract

We consider halo formation in continuous beams
oscillating at natura modes by inspecting particle
trajectories. Trajectory equations containing field
nonlinearities are derived from a weighted polynomial
expansion. We then use perturbational techniques to
further analyze particle motion.

1. INTRODUCTION

For continuous beams with dliptical symmetry, there are
two natural oscillation modes. the symmetric, or even
mode, and the anti-symmetric, or odd, mode. Halo
formation is triggered by parametric resonances between
the betatron motion of the particles and the natural modes
of the collective beam [3]. The eectric fields provided the
coupling between the motions.

In the laboratory frame, the equations of motion for the x
coordinate of a particleare

(1) x"+k§(s)x:Kz%Ex(x,y,X,Y;s) ,
where ky is the focusing constant, A is the line charge

density, the generalized beam perveance K is
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| isthe beam current, & isthe permittivity of free space, 8
isnormalized velocity, yistherdativistic factor, and Ey is
the sdf eectric-field component. From these exact
equations we shall derive trajectory equations which
include the third order nonlinearities of the self-fields.

2. WEIGHTED FIELD EXPANSION
Here we assume that the self-field E, may be represented
with a polynomial expansion in the Cartesian coordinate
variable x. Considering only the x-axis dynamics we have

(3) E(X) =@y +ax+a,x? +a;x° +a,x* +agx® +K

where the a, are typicaly functions of the bunch
envelopes. We are unlikdy to find a polynomial
expansion that closaly approximates the true fields over
the entire beam region. However, it is possible to find
one that represents the bunch fields in an averaged sense.
Letting <LTJ be a weighted inner product, this criterion
trandates into the following equation for coefficients a,:
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The above matrix is the Gram matrix for the polynomial
basis. The right-hand sde represents the field projection
onto the space of polynomials. We choose the weighting
factor as the particle digribution itself. Regions of high
density contribute proportionally more toward the
expansion coefficients. Thisinner product is defined as
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where qisthe unit charge and N isthe number of particles
per cross-section. The inner product also generates the
moment operator (DE(L1). Thus, the Gram matrix is
composed of the x plane moments (X" while the right-
hand side of Eq. (4) contains the field moments (X"E,).

2.1 Computation of Electric Field Moments

It is possible to compute the field moments explicitly for
beams having dliptical symmetry in configuration space.
The sdf dectric field of such abeam [2] is given by

2 2
gxy e [t+xx2+t4)-/Y2]
6) E,(X,VY) =X
(6) Ex(xy) 2¢, Io (t+X2)¥2 (1 +y2)2

where f()/represents the profile of the distribution and X,
Y represent the x, y envelopes of the equivalent uniform
beam. To specify (X" and (X'E,) it is first convenient to
introduce definitions involving the function f. We have

7 = K = T = 02
() g(r) Lf(s)ds F, jo s"f(s)ds, G, jo g2(r)dr.
Now the first six nonzero spatial moments are

8) (=1 (=X F ey 'F e SX°F
()(1} 1, <x> 2F0’<X> 5 FO,<X> 6 F,

Using Eq. (6), the nonzero field moments are
(XEX>: A X :
angy X +Y

(9) 3 3
<X3E>:# ix_+ i_gﬁ XY .
I amg | Fo X+Y | Fy 2F2 (X +Y)?
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2.2 Cubic Expansion of Self-Fields
To expand the sdlf-fields out to third order we must keep
terms up to ag. Theresulting particletrajectory equation is

x"+k§x——2K {I’lﬂ'z—Y }x
(10) X(X +Y) X+Y
+—32K {r3+r4 Y }xfﬂ:o.
XX +Y) X+Y

where the I'; are functions of the distribution. Thus, we
have separated the effects of the distribution from the
motion of the envelopes X and Y. Thevaluesof I are

r. = 5FoF3 ~6FF, r. = 6FoF -8F?2
a ' 10FF, -9F2 * T10FF, -9F2’
= 9GyF, / Fy = 6F;F, = 12F,G, / Fy - 8F _

10F;F; - 9F; 10F,F - 9F 2

Tablelligstherl; for several different distributions.
Tablel: distribution expansion coefficients

Distrib.|  f(x) rlr|r]|r,
Uniform| C x<1 1 0 0 0

Parabolic|C(1-x) x<1| 2 | -2/5| 4/3 |-16/15
Gaussan| Ce* 32 |-v4| 23 | -13
Hollow | Cxe™ | 8/13[-3/52] 4/39 |-2/39
2.3 Examples

To compare with previously published work on hao
formation [3], we normalize the above equations. We
shall aso assume even mode excitation of the envel opes,
so that X(s)=Y(s)=R(s). The normalizationsare

12) r=kps r(r) = R(kyS)/ Ry
ke =kogy2+2n2 §(1)=x(keS)/ Ry

X (s)

KoRo

where 7 is the tune depression and Ry is the equilibrium
radius. The resulting unit-less trajectory equations are

2 r 1-n? (PR
nogk o

Figure 1 shows surface of section plots for the normalized
trajectory equations at 7=0.5 and a Gaussian digtribution.
We took r(7)=1+sgcoskt where k=kg/ko. In each plot
twenty trajectories where started from evenly spaced
positions on the x-axis. There is clearly a two-to-one
resonance condition with the beam envel opes, identifiable
from the (two) period-two fixed points seen aong the x-
axis. By increasing the mismatch parameter ¢, the sable
idands shrink and the velocity of the trgectories
increases. The noticeable difference between these results
and that of the particle-core model is that the fixed points
are located at smaller values.
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Figure 1. stroboscopic plots for trajectory equations

3. PERTURBATION ANALYSIS
Here we assume that the transverse beam envelopes X(s)
and Y(s) (of the equivalent uniform beam) perform small
oscillations about anominal value R,. The wave numbers
of these oscillations are kg and ko for the even and odd
modes, respectively. Thus,

X(s) = Ry + Ry coske o,

Y(s) = Ry = &R, coske oS,
where gisthe (small) mismatch parameter. Using a multi-
scale perturbation analysis about &, we find a first-order
approximation to the trajectory solutions [1]. Situations

near parametric resonance are considered by employing a
(small) “detuning” parameter ddefined below. Wefind

X(s) = ea(es) codks + pes)]

where the functions a(t) and ¢(t) satisfy

(14)

(15)

CE,O

a(t) = > a(t)sin(2d +29),

(16)
CE,O

' 3C; 5
t)=—=a“(t) + 24 +2¢),
¢ O =g a O+ =cos ?)
with the following definitions:
_ - K (2 +T13)
17 k =k.,7 =k, [1- S '
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K
Ce=— @M +1y) =2(k5 - k?),
Ro
K 2 2y 1+l
18 Co=—(IL+L) =2(k§ — k) ——=,
(18) o Rg(l 2) =2(kg )2|_1+[_2
2 2
C3: K4 (2r3+r4):k0 2k 2r3+r4|
2Ry RS 2, +T,
1
(19  5=(k-Zkeo)le.

Note that the definition of 7 here is different then in
Section 2. Also, the above is valid only when J <<k
This system admits the solution

2C
(20) 3C:3 3C:3
T
t)=-a&-=,
@) >

which corresponds to the period-two fixed points seen in
the stroboscopic plots. Near this stable solution, the
system performs linear oscillations with wave number «
3C,C

3 2E,O A

8k

(21) K

The resulting linearized approximation is

X(s) = \/E[A+ Ay cossxs]

ikEos+A0 3Cs sineks-2 |,
2 & 2Ceo 2

where Aq isan arbitrary constant.

3.1 Analyss
The period-two fixed point is found by taking A;=0. The
magnitude of the fixed point X, for =0, is approximately

(22)

M+,
,+T,

23 xg :%\/ERO

The digance down the channel needed to develop halo,

say |y, can be inferred from k. A complete amplitude
oscillation yields k=277 Letting &=0, |, should scale as

12n n
24) |, ~== .
( ) h c ko 1‘/72

3.2 Examples

To examine the accuracy of the perturbation equations we
compare them with the full equations using the following
parameters for the even mode [M=Gaussian, £=0.25,
R=1.8 mm, k=3.2 rad/m, 7=0.9 (K=4.59x10°). The
trajectories were started at x=0.1 mm, X'=0 mrad. In Egs.
(16), we took &=0 for worst case and set ke=2k in the full
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equations. Figure 2 shows numeric solutions of the
perturbation equations and the full trgjectory equations.
The amplitude of the approximate solution is larger,
probably due to the fact that &=0. Here we get |,=37 m.
If the initial conditions are started closer to the fixed
point, the amplitude period is approximately I,. The
location of the fixed point is x=1.72 mm. Solving the
full equations, we find that the true value is 1.5 mm.
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Figure 2: comparison of nonlinear trajectories

4, CONCLUSION

The availability of ordinary differential equations
describing nonlinear particle trgjectories in a mismatched
beam simplifies the study of many aspects of halo
formation. Further, it is possible to use the trajectory
equations in conjunction with the envelope equations to
obtain more consstent computer solutions. Another
avenue of further study is beam behavior in presence of
alternating gradient (AG) focusing.
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