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Abstract

We consider halo formation in continuous beams
oscillating at natural modes by inspecting particle
trajectories. Trajectory equations containing field
nonlinearities are derived from a weighted polynomial
expansion. We then use perturbational techniques to
further analyze particle motion.

1. INTRODUCTION
For continuous beams with elliptical symmetry, there are
two natural oscillation modes: the symmetric, or even
mode, and the anti-symmetric, or odd, mode. Halo
formation is triggered by parametric resonances between
the betatron motion of the particles and the natural modes
of the collective beam [3]. The electric fields provided the
coupling between the motions.

In the laboratory frame, the equations of motion for the x
coordinate of a particle are
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where k0 is the focusing constant, λ is the line charge
density, the generalized beam perveance K is
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I is the beam current, ε0 is the permittivity of free space, β
is normalized velocity, γ is the relativistic factor, and Ex is
the self electric-field component. From these exact
equations we shall derive trajectory equations which
include the third order nonlinearities of the self-fields.

2. WEIGHTED FIELD EXPANSION
Here we assume that the self-field Ex may be represented
with a polynomial expansion in the Cartesian coordinate
variable x. Considering only the x-axis dynamics we have
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where the an are typically functions of the bunch
envelopes. We are unlikely to find a polynomial
expansion that closely approximates the true fields over
the entire beam region. However, it is possible to find
one that represents the bunch fields in an averaged sense.
Letting �⋅,⋅� be a weighted inner product, this criterion
translates into the following equation for coefficients an:
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The above matrix is the Gram matrix for the polynomial
basis. The right-hand side represents the field projection
onto the space of polynomials. We choose the weighting
factor as the particle distribution itself. Regions of high
density contribute proportionally more toward the
expansion coefficients. This inner product is defined as
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where q is the unit charge and N is the number of particles
per cross-section. The inner product also generates the
moment operator �⋅�=�⋅,1�. Thus, the Gram matrix is
composed of the x plane moments �xn

� while the right-
hand side of Eq. (4) contains the field moments �xnEx�.

2.1 Computation of Electric Field Moments
It is possible to compute the field moments explicitly for
beams having elliptical symmetry in configuration space.
The self electric field of such a beam [2] is given by
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where f(⋅) represents the profile of the distribution and X,
Y represent the x, y envelopes of the equivalent uniform
beam. To specify �xn

� and �xnEx� it is first convenient to
introduce definitions involving the function f. We have
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Now the first six nonzero spatial moments are
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Using Eq. (6), the nonzero field moments are
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2.2 Cubic Expansion of Self-Fields
To expand the self-fields out to third order we must keep
terms up to a3. The resulting particle trajectory equation is
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where the Γi are functions of the distribution. Thus, we
have separated the effects of the distribution from the
motion of the envelopes X and Y. The values of Γi are
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Table 1 lists the Γi for several different distributions.

Table 1 : distribution expansion coefficients
Distrib. f(x) ΓΓΓΓ1 ΓΓΓΓ2 ΓΓΓΓ3 ΓΓΓΓ4

Uniform C x≤1 1 0 0 0

Parabolic C(1-x) x≤1 2 -2/5 4/3 -16/15

Gaussian Ce-2x 3/2 -1/4 2/3 -1/3

Hollow Cxe-2x 8/13 -3/52 4/39 -2/39

2.3 Examples
To compare with previously published work on halo
formation [3], we normalize the above equations. We
shall also assume even mode excitation of the envelopes,
so that X(s)=Y(s)=R(s). The normalizations are
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where η is the tune depression and R0 is the equilibrium
radius. The resulting unit-less trajectory equations are
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Figure 1 shows surface of section plots for the normalized
trajectory equations at η=0.5 and a Gaussian distribution.
We took r(τ)=1+εcosκτ where κ=kE/k0. In each plot
twenty trajectories where started from evenly spaced
positions on the x-axis. There is clearly a two-to-one
resonance condition with the beam envelopes, identifiable
from the (two) period-two fixed points seen along the x-
axis. By increasing the mismatch parameter ε, the stable
islands shrink and the velocity of the trajectories
increases. The noticeable difference between these results
and that of the particle-core model is that the fixed points
are located at smaller values.

3. PERTURBATION ANALYSIS
Here we assume that the transverse beam envelopes X(s)
and Y(s) (of the equivalent uniform beam) perform small
oscillations about a nominal value R0. The wave numbers
of these oscillations are kE and kO for the even and odd
modes, respectively. Thus,
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where ε is the (small) mismatch parameter. Using a multi-
scale perturbation analysis about ε, we find a first-order
approximation to the trajectory solutions [1]. Situations
near parametric resonance are considered by employing a
(small) “detuning” parameter δ defined below. We find
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where the functions a(t) and φ(t) satisfy
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with the following definitions:

(17)
2

)2(
1 21

2
0

2
0

00
Γ+Γ−≡=

Rk

K
kkk η ,

-2 -1 0 1 2
x•R0

-2

-1

0

1

2

3

x'
•k 0R 0

a) phase portrait for ε=0.25
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b) phase portrait for ε=0.50

Figure 1: stroboscopic plots for trajectory equations
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Note that the definition of η here is different then in
Section 2. Also, the above is valid only when δ <<k.
This system admits the solution
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which corresponds to the period-two fixed points seen in
the stroboscopic plots. Near this stable solution, the
system performs linear oscillations with wave number κ
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The resulting linearized approximation is

(22)

[ ]

,
2

sin
2

3

2
1

cos

cos)(

,

3
0,

0

�
�

�

�

�
�

�

�
−+⋅

+≈

πεκ

εκε

s
C

C
Ask

sAAsx

OE
OE

where A0 is an arbitrary constant.

3.1 Analysis
The period-two fixed point is found by taking A0=0. The
magnitude of the fixed point xfp, for δ≈0, is approximately
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The distance down the channel needed to develop halo,
say lh, can be inferred from κ. A complete amplitude
oscillation yields κlh=2π. Letting δ=0, lh should scale as
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3.2 Examples
To examine the accuracy of the perturbation equations we
compare them with the full equations using the following
parameters for the even mode: Γi=Gaussian, ε=0.25,
R0=1.8 mm, k0=3.2 rad/m, η=0.9 (K=4.59×10-9). The
trajectories were started at x=0.1 mm, x’=0 mrad. In Eqs.
(16), we took δ=0 for worst case and set kE=2k in the full

equations. Figure 2 shows numeric solutions of the
perturbation equations and the full trajectory equations.
The amplitude of the approximate solution is larger,
probably due to the fact that δ=0. Here we get lh=37 m.
If the initial conditions are started closer to the fixed
point, the amplitude period is approximately lh. The
location of the fixed point is xfp=1.72 mm. Solving the
full equations, we find that the true value is 1.5 mm.

4. CONCLUSION
The availability of ordinary differential equations
describing nonlinear particle trajectories in a mismatched
beam simplifies the study of many aspects of halo
formation. Further, it is possible to use the trajectory
equations in conjunction with the envelope equations to
obtain more consistent computer solutions. Another
avenue of further study is beam behavior in presence of
alternating gradient (AG) focusing.
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Figure 2: comparison of nonlinear trajectories
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