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MULTISCALE ANALYSIS OF RMS ENVELOPE DYNAMICS

A. Fedorova, M. Zeitlin, IPME, RAS, St. Petersburg, V.O. Bolshoj pr., 61, 199178, Rtissia

Abstract Our representation for solution has the following form
We present applications of variational — wavelet approach 2t) =20+ D zlwit), wi~2 (1)
to different forms of nonlinear (rational) rms envelope J>N

equations. We have the representation for beam bunch (\)NSﬁiCh corresponds to the full multiresolution expansion in
cillations as a multiresolution (multiscales) expansion in P b

all time scales. Formula (1) gives us expansion into a slow
the base of com I rted wavel . . .
pactly supported wavelet bases partz5i°* and fast oscillating parts for arbitrary N. So, we

may move from coarse scales of resolution to the finest one
for obtaining more detailed information about our dynami-
1 INTRODUCTION cal process?C]The first term in the RHS of equation (l); corre-

In this paper we consider the applications of a new numePonds on the global level of function space decqmposition
rical-analytical technique which is based on the method@ resolution space and the second one to detail space. In
of local nonlinear harmonic analysis or wavelet analysis t§11S Way we give contribution to our full solution from each
the nonlinear root-mean-square (rms) envelope dynamiégale of resc')lutl'on or each time scale. The same is correct
[1]. Such approach may be useful in all models in which ifor the contribution to power spectral density (energy spec-
is possible and reasonable to reduce all complicated prafuM): We can take into account contributions fremch

lems related with statistical distributions to the problem!€Vel/scale of resolution. In part 2 we describe the different

described by systems of nonlinear ordinary/partial differfo'ms Of rms equations. In part 3 we present explicit ana-

ential equations. In this paper we consider an approa&‘?:ical construction for solutions of rms equations from part

based on the second moments of the distribution functiors Which are based on our variational formulation of ini-

for the calculation of evolution of rms envelope of a beamtié! dynamical problems and on multiresolution represen-
tion [11]. We give explicit representation for all dynami-

The rms envelope equations are the most useful for anal&?—

sis of the beam self—forces (space—charge) effects and af@) variables in the base of compactly supported wavelets.

allow to consider both transverse and longitudinal dynanf2Ur solutions are parametrized by solutions of a number
ics of space-charge-dominated relativistighvibrightness ©f reduced algebraical problems from which one is nonlin-
axisymmetric/asymmetric beams, which under short las§" With the same degree of nonlinearity and the rest are

pulse—driven radio-frequency photoinjectors have fast trat€ linéar problems which correspond to particular method
sition from nonrelativistic to relativistic regime [1]. Anal- Of c@lculation of scalar products of functions from wavelet

ysis of halo growth in beams, appeared as result of bun&fSes and their derivatives.

oscillations in the particle-core model, also are based on
three-dimensional envelope equations [2]. From the for- 2 RMS EQUATIONS

mal point'of view we may conside'r rms envelope equatiorgelow we consider a number of different forms of RMS en-
after straightforward transformations to standard Cauc elope equations, which are from the formal point of view

form as a system of nonlinear differential equations Wh'cﬁot more than nonlinear differential equations with ratio-

are not more than rational (in dynamical variables). Be- . - . .
; ( .dy amical va ables) ®hal nonlinearities and variable coefficients. Lfgtrq, z2)
cause of rational type of nonlinearities we need to co

"Be the distribution function which gives full information

sider some extension of ourresults from [3]-{10], which ASbout noninteracting ensemble of beam particles regard-
based on application of wavelet analysis technique to var.

ational formulation of initial nonlinear problems. Waveletﬁr?etr? x:cri:;) aec);(?rg(r:: rtz;r;s;;resrts ﬁ(fnrlﬁ\slfafgﬁrgflr??ﬁzaical
analysis is a relatively novel set of mathematical methOdﬁ‘lformation' from the second moments

which gives us a possibility to work with well-localized

bases in functional spaces and give for the general type of 2 < 22 >— //fo(xl 22)dz1dzs
operators (differential, integral, pseudodifferential) in such o ! ! ’

bases the maximum sparse forms. Our approach in this
paper is based on the generalization [11] of variational- Tz
wavelet approach from [3]-[10], which allows us to con-

sider not only polynomial but rational type of nonlineari- “ziz. = < 7172 >= //$1$2f($1a$2)d$1d$2
ties.

< a3 >= //x%f(xl,xg)dxldxg (2

RMS emittance ellipse is given by? ... =< z} ><
*e-mail: zeitin@math.ipme.ru r2 > — < mzy >2. Expressions for twiss parameters
T http:/Avww.ipme.ru/zeitlin.html; http://Awww.ipme.nw.ru/zeitlin.html  are also based on the second moments.
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We will consider the following particular cases of rmsand have arbitrary dependence of time. Because of time di-
envelope equations, which described evolution of the mdation we can consider only next time interval< ¢ < 1.
ments (1) ([1],[2] for full designation): for asymmetric Let us consider a set of functions
beams we have the system of two envelope equations of

d
the second order far,,, ando,,: D,(t) = xia(Qiyq;) + Py (7)
" AN OV A and a set of functionals
Uan + Uﬁm 7 + Qan (7) 0371 = (3) 1
E.I: q)q;f,dt— 7;.%7;7;1, 8
I/(IO(le +sz)'73)+572m/<733¢1’72a () /0 (t) Qiry |0 (8)
2
. oy 02 Y _ wherey;(t) (y;(0) = 0) are dual (variational) variables. It
Opy T 0py— + 825, Oy = ) : YY)
gl is obvious that the initial system and the system

I/(IO(UOM + 0-362)'73) + E%xz/ggg'YQ F(.ﬁ) -0 (9)
The envelope equation for an axisymmetric beam is a pag;q equivalent. Of course, we consider sagffiz) which

ticular case of preceding equations. _ _ do not lead to the singular problem with (z), whent = 0
Also we have related Lawson’s equation for evolutiony; — 1 j.e. Q,(2(0)), Q:(z(1)) # .

of the rms envelope in the paraxial limit, which governs Now we consider formal expansions fof, y;:
. . . . r'y L
evolution of cylindrical symmetric envelope under external

linear focusing channel of strenghts.: z;(t) = 2;(0) + Z MNeor(t) ;) = Zn;?%(t), (10)
k T

oA : e . . .
o +o (%) + K,.0= 05573 035572’ (4)  whereyy(t) are useful basis functions of some functional
space [2, LP, Sobolev, etc) corresponding to concrete
whereK, = —F,/rFymc®, B = vfc = /T—72 problem and because ofifial conditions we need only

According [2] we have the following form for envelope pe(0)=0r=1.,N, i=1..n,

equations in the model of halo formation by bunch oscil- A={N={\F = (A2, 00N, (11)
lations: ’ o ’
5 where the lower index i corresponds to expansion of dy-
X 4+ k2(s)X — 3K & e _ 0, namical variable with index i, i.ez; and the upper index
’ 8 YZ X3 r corresponds to the numbers of terms in the expansion of
Y+ k2 (s)Y — 3K & i _ 0 (5) dynamical variables in the formal series. Then we put (10)
Y 8 X7 Y3 ’ into the functional equations (9) and as result we have the
. ) ,3K &, £? following reduced algebraical system of equations on the
Z+k:(s)Z — 8 Xy 273 0, set of unknown coefficients! of expansions (10):
where X(s), Y(s), Z(s) are bunch envelopés,&,, &, = L(Qij, A, ar) = M (P, A, By), 12)
F(X,Y, Z).

After transformations to Cauchy form we can see that a Ilzgr?)f?si?iﬁtozbﬁe?:%')w v‘r\:/l;nzrz)!\g(elblr)a;?fr?kggvsnl_'sso?nd
this equations from the formal point of view are not more b '

than ordinary differential equations with rational nonlin-recjuced system of algebraical equations (RSAE)(12).

earities and variable coefficients (also,b we may consid Qi; are coeflicients (with possible time dependence) of
. . . , . : E'HS of initial system of differential equations (6) and as
regimes in whichy, 4" are not fixed functions/constants but nsequence are coefficients of RSAE
satisfy some additional differential constraint/equationsEOP gre coefficients (with possible tirﬁe dependence) of
but this case does not change our general approach). RHS of initial system of differential equations (6) and as
consequence are coefficients of RSAE= (i1, ..., ig+2),
3 RATIONAL DYNAMICS J = (j1, -, jp+1) are multindexes, by which are labelled

Our problems may be formulated as the systems of ordi-! andj3; — other coefficients of RSAE (12):

nary differential equations
Y a Br =ABir.gpir} = / I e @
dxqv 1§]k§p+1
Qi(x) e Pi(z,t), = (x1,..., 70), (6) . N
where p is the degree of polinomial operator P (6)
i=1,...,n, maxdeg P, =p, maxdegQ; =q
. . . . ar = {ail"'aiq+2} = Z /99111'--410.713---9911,1+2,
with fixed initial conditionsz;(0), where P;, Q; are not 1oigra
more than polynomial functions of dynamical variablgs (14)
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where q is the degree of polynomial operator Q (6)—=
(L, q+2), ¢, = de;, /dt.

Now, when we solve RSAE (12) and determine unknown
coefficients from formal expansion (10) we therefore ob-
tain the solution of our initial problem. It should be noted
if we consider only truncated expansion (10) with N terms
then we have from (12) the system &f x n algebraical
equations with degreé = maz{p, ¢} and the degree of
this algebraical system coincides with degree of initial dif-
ferential system. So, we have the solution of the initial
nonlinear (rational) problem in the form

N
2i(t) = @i(0) + 3 AFX(2), (15)
k=1

where coefficients\¥ are roots of the corresponding re-
duced algebraical (polynomial) problem RSAE (12). Con-
sequently, we have a parametrization of solution of initial
problem by solution of reduced algebraical problem (12).
The first main problem is a problem of computations of
coefficientsa; (14), 85 (13) of reduced algebraical sys-
tem. These problems may be explicitly solved in wavelet
approach. The obtained solutions are given in the form
(15), where X}, (t) are basis functions andi are roots
of reduced system of equations. In our ca$g(t) are
obtained via multiresolution expansions and represente
by compactly supported wavelets aifl are the roots of
corresponding general polynomial system (12). Our con-
structions are based on multiresolution approaatcaBise
affine group of translation and dilations is inside the ap-

proach, this method resembles the action of a microscopef5]

We have contribution to final result from each scale of res-
olution from the whole infinite scale of spaces. More ex-
actly, the closed subspa®&(j € Z) corresponds to level

j of resolution, or to scale j. We consider a multiresolution [6] AN. Fedorova, M.G. Zeitiin and Z. Parsa,

analysis ofL?(R"™) (of course, we may consider any dif-
ferent functional space) which is a sequence of increasing
closed subspacés: ..V_o, Cc Vi CcVyCcViC W C ..
satisfying the following properties:

Avi=0 Uvi=L®",
JEZ JEZ
So, on Fig.1 we present contributions to bunch oscillations
from first 5 scales or levels of resolution. It should be noted

(2]
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Figure 1: Contributions to bunch oscillations: from scale
2! t0 2°.
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