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Abstract
An analytical solution for a self-consistent particle

equilibrium distribution in an RF field with uniform
transverse focusing is applied to the problem of the high
brightness beam current limit. The distribution function in
phase space is determined as a stationary function of the
energy integral. Particle distribution of the bright beam
always tends to such a shape that the space charge beam
potential is opposite to the external potential regardless of
the applied field. Analytical expressions for r-z
equilibrium beam profile and beam current limit in an RF
field are obtained.

1  INTRODUCTION

The stationary self-consistent particle distribution in
an RF field provides an estimation of the maximum beam
current in an accelerating field. The approximation of the
bunched beam as an ellipsoid gives the most simple way
to determine the maximum beam current. However, an
ellipsoid is not a self-consistent solution for a bunched
beam in an RF field. In Ref. [1] the self-consistent
bunched beam was approximated by a uniformly
populated cylinder with density dependent on the
longitudinal coordinate. In Ref. [2] the spatial particle
distribution in a 3-dimensional configuration space was
calculated numerically. In Ref. [3] an analytical solution
for a self-consistent high brightness bunched beam
distribution was found. The latest approach allows us to
determine the self-consistent maximum accelerated beam
current.

2 SELF-CONSISTENT SPACE CHARGE
POTENTIAL OF THE BEAM

The Hamiltonian for particle motion in an RF field
with continuous transverse focusing is given by [1]
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2  + py
2

2 m γ
  + pz

2
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 + q Uext + q Ub

γ2
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kz

 [Io(kzr
γ
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2

2
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where px and py are transverse particle momentum,

pz = p - ps and ζ = z - zs are deviations from longitudinal
momentum and position of synchronous particle,
respectively, Uext is the potential of an external field, Ub
is the space charge potential of the beam, E is the
amplitude of the accelerating field, ϕs is the synchronous
phase, Gt is the gradient of the focusing field, r is the

particle radius, kz = 2π/(βλ) is the wave number and λ  is
the wavelength. In Ref. [3] the first approximation for a
self-consistent potential of the beam was found:

Ub = - γ2

1 + δ
 Uext  ,                          (3)

where δ ≈ b-1 is a small parameter, inversely proportional
to the dimensionless beam brightness, b,

b = 2
βγ

 I
Ic

 R
2

εt
2

,                               (4)

I is the beam current, R is the beam radius, Ic is the
characteristic value of the beam current

Ic = 4πεo
mc3

q
 ,                             (5)

and εt is the transverse beam emittance. Equation (3)
indicates that the particle distribution of the bright beam
has such a shape that the space charge potential is
opposite to the external potential. This fact is well known
for a stationary distribution of a transported beam in a
linear focusing channel [1]. Equation (3) generalizes this
statement for a 3-dimensional beam distribution.

Taking the first approximation to the space charge
potential of the beam, Eq. (3), the Hamiltonian
corresponding to the self-consistent bunch distribution is
as follows:
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) Uext .        (6)

Equation (6) indicates that in the presence of an intense,
bright bunched beam (δ << 1), the stationary longitudinal
phase space of the beam becomes narrow in momentum
spread, remaining, in the first approximation, the same in
coordinate. This is in a qualitative agreement with  the
study of Ref. [1].

3  SELF-CONSISTENT BEAM PROFILE

A self consistent space charge distribution of a
matched beam in a channel is attained  from the Poisson's
equation:

ρ(r,ζ) = - εo [1
r
 ∂
∂r

 (r ∂Ub

∂r
) + ∂2Ub

γ2∂ζ2
] = 2 εo γ2

1 + δ
 Gt.  (7)

The space charge density of a high brightness beam is
nearly  constant within the bunch.

From Eq. (3) it follows, that, in the first
approximation, space charge potential of the beam is the
same function of coordinates, as the external potential,
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with opposite sign. Therefore, equation Uext (r, ζ)= const
gives the family of equipotential lines of space charge
field of the beam:

Io(kzr
γ

)sin(ϕs-kzζ) - sinϕs+ kzζcosϕs + Gtkz

2 E
 r2 = const.  (8)

In general case, bunch boundary does not create an
equipotential surface. Consider uniformly populated
bunch with boundary R(ζ), defined by nonlinear equation

Io(kzR
γ

)sin(ϕs-kzζ) - sinϕs+kzζcosϕs+C(kzR)2= const.  (9)

Space charge potential of the bunch with boundary, Eq.
(9), is close to that, given by Eq. (3). Parameter C is used
to adjust the shape of the bunch in such a way, that space
charge field of the bunch is opposite to the external field
with the specific values of accelerating field, E, and
focusing gradient, Gt.

The value of constant in Eq. (9) can be determined
from the condition, that longitudinal bunch size is, in the
first approximation, the same as for zero - current mode.
Therefore, at R(ζ) = 0, the left bunch boundary is
kzζ = 2ϕs and the value of constant is

const = 2ϕs cosϕs - 2 sin ϕs .                (10)

Substitution of Eq. (10) into Eq. (9) gives the first
approximation to the beam profile, R = R(ζ), defined by
the expression (see Fig. 1 b):

Io(kzR
γ

)sin(ϕs-kzζ)+sinϕs-(2ϕs-kzζ)cosϕs+C(kzR)2=0.  (11)

For a long bunch, βλ >> Rmax, one can assume Io (ξ) ≈ 1
and transverse bunch size, Rmax is:

Rmax = 1
kz

 2 (ϕs cosϕs - sinϕs)

C
 .         (12)

Parameter C can be expressed as a function of the
ratio of transverse, Gt, and longitudinal, Gz, gradients of
electric field within the bunch, C = C (Gt/Gz), see Fig. 2.
Because of Eq. (3), the ratio of gradients, Gt/Gz, is the
same for the external field and for the space charge field
of a stationary bunch. The gradient of accelerating field
in the vicinity of synchronous particle is

Gz = 2π E sinϕs

βλ
 .                           (13)

The values of gradients of space charge field of the
bunch are obtained from numerical solution of the
Poisson's equation  for a uniformly populated bunch with
boundary, Eq. (11), for every specific value of the
parameter  C.  Inverse function, C = C (Gt/Gz) , gives the
dependence, presented in Fig. 2.
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Fig 1. Stationary distribution of bunched beam, ϕs = -1, C
= 3.8, δ = 0.2: a) RF accelerating field, b) particle
distribution, c) longitudinal space charge field of the
bunch.
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4   MAXIMUM BEAM CURRENT

The above analysis allows us to determine the
value of maximum beam current which can be
accelerated for given values of an accelerating field, E,
and focusing gradient, Gt. The volume of the bunch is
obtained by integration of the bunch shape along the z-
coordinate:

V = π R2(z) dz
zmin

zmax

   .                (14)

For a long bunch, βλ >> Rmax, integration gives:

V = (βλ)3

8π2C
 f(ϕs) ,                         (15)

f(ϕs) = 3ϕs sinϕs - 9
2

 ϕs
2 cosϕs + cosϕs - cos2ϕs .    (16)

The total charge of the bunch is Q = ρ V, and the
beam current, I = Q c/λ , is therefore,

I = Ic ( 
β3γ2

16π3C (1 + δ)
) (Gt q λ2

m c2
) f(ϕs) .       (17)

Eq. (17) gives a unique expression for the limited
beam current for every combination of the values of RF
field, E, and focusing gradient, Gt. The expression of
f (ϕs), Eq. (16), is close to a cubic function of the
synchronous phase, ϕs

3, (see Fig. 3). It indicates, that the
maximum beam current is proportional to the cube of the
synchronous phase, which is in qualitative agreement
with the study of Ref. [1].
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Fig. 2. Coefficient C in bunch shape as a function of ratio
of transverse and longitudinal gradients: a) ϕs = -600, b)
ϕs = -300.
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Fig. 3. Function f(ϕs) = 3ϕssinϕs- 9
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