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Abstract

Ionization cooling of muon beams is a crucial component
of the proposed muon collider and neutrino factory. Cur-
rent studies of cooling channels predominantly use simula-
tions which track single particles, an often time consuming
procedure. These simulation efforts are discussed and com-
pared with analytic studies using equations for the beam
moments in a linear channel. These dynamic equations,
which are analogous to the Courant-Snyder description of
quadrupole focussing, incorporate the basic aspects of ion-
ization cooling: energy loss and scattering in material, ac-
celeration by radio frequency (RF) cavities, and focussing
in solenoid magnets. This formalism can be used to study a
wide range of cooling channels, and to evaluate the impact
of engineering constraints on cooling channel performance.

1 INTRODUCTION

Interest in developing intense muon beams has been grow-
ing in recent years, both for a muon collider[1] and for
a neutrino factory[2, 3]. The muon mass approaches the
scale of the proton mass, without the internal structure.
Furthermore, as a neutrino source, muon decays produce
different pairs of neutrinos depending on the charge of the
muons in the beam. Because of their �s half-life and the
expense of producing muons, standard methods of beam
preparation are not practical. Most schemes for produc-
ing muon beams use energetic protons incident on a tar-
get as a muon source, which results in a diffuse beam with
a large energy spread requiring substantial beam cooling.
The resulting six-dimensional phase space density must be
increased by a factor of order 100 for a neutrino factory,
and of order 106 for a muon collider.

Ionization cooling[4] is a promising alternative for pro-
ducing a well-collimated beam. In ionization cooling, par-
ticles are slowed down by passing through material and re-
accelerated with radio frequency (RF) cavities. This results
in a reduction in transverse momentum, hindered by scat-
tering events which increase the spread in particle angles.
Such cooling channels have novel designs and concerns,
and are currently simulated with single-particle tracking
codes such as GEANT[5] and ICOOL[6].

To facilitate lattice design, it is desirable to have a rapid
simulation tool with an accessible physical interpretation.
Results for solenoid cooling channels are discussed which
were obtained from beam moments equations[7] in the
paraxial approximation, extending the Courant-Snyder[8]
formalism for quadrupole lattices. These equations incor-
porate the main factors in ionization cooling: interactions
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with material, acceleration by RF cavities, and the possible
accumulation of canonical angular momentum.

This set of equations has been incorporated into a version
of the ICOOL simulation code for a rapid analysis of lat-
tice properties and beam cooling performance. The results,
applied to an engineered cooling channel design from the
Fermilab feasibility study of a neutrino source[9], is com-
pared with the ICOOL tracking code.

2 SINGLE-PARTICLE MOTION

We first consider single particle equations of motion in
vacuum with magnetic fields only. The magnetic field
inside of a cylindrically symmetric solenoid is given by
~B = r � [A�(r; z)ê�]. To lowest order in radius, A� '
rB(z)=2, where B(z) � Bz(r = 0; z). The constants
of motion are total momentum and the canonical angular
momentum, Lcanon = xPy � yPx + qrA�. We can sim-
plify these expressions if we consider a rotating coordinate
frame (the Larmor frame), with XR = x cos' � y sin',
YR = x sin'+ y cos', and

'0 =
qA�

Pzr
' qB(z)

2Pz
� �: (1)

The linearized equations of motion in terms of these ro-
tating coordinates reduce to X 00

R = ��2XR and Y 00
R =

��2YR; nonlinear terms only appear to third order in XR

and YR. In particular, coupling to longitudinal motion only
appears in third order terms.

We can parametrize the solutions to the linearized equa-
tions in terms of a betatron function and phase by XR =
A1

p
�p cos(� ��1) and YR = A2

p
�p cos(�� �2). To

this order, there are two additional constants of the motion,
the transverse amplitudes A1 and A2 which correspond to
the Courant-Snyder invariants. The betatron function must
then satisfy �0 = 1=�p and

2�p�
00

p � (�0p)
2 + 4�2p�

2 � 4 = 0; (2)

where �2(z) is the linearized focussing term. In contrast
with quadrupoles, the focussing strength is positive in both
transverse directions, and increases as the magnetic field
squared. The transverse amplitudes are determined from

A2

1
=

X2

R

�p
+ �p

�
X 0

R +
�p
�p

XR

�2

; (3)

where �p = ��0p=2, and similarly for A2.
Note that the focussing resembles that of a quadrupole

lattice only in the rotating coordinate frame. In terms
of these amplitudes, the angular momentum is Lcanon '
PzA1A2 sin(�2 � �1). The evolution of the longitudinal
momentum is consistent with P 2

z

�
1 + (x0)2 + (y0)2

�
=

P 2.
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3 MODEL PARTICLE DISTRIBUTION

Above we examined individual particle trajectories; now
we consider a simplified distribution in transverse phase
space, which must be treated as 4-dimensional because of
the coupling between x and y co-ordinates. For a cylindri-
cally symmetric beam, the distribution should in general be
a function of the angular momentum Lcanon and the com-
bined amplitude A2

1 +A2
2. A convenient form is the linear

combination

A2

? �
p
1 + L2(A2

1
+A2

2
)� 2LLcanon

Pz
; (4)

where L is a dimensionless parameter related to the net
canonical momentum of the beam. This expression incor-
porates canonical momentum while ensuring that A2

?
is al-

ways positive. A Gaussian beam will then have a distribu-
tion function given by

F =
NP 2

z

4�2m2c2�2N
exp

�
� PzA

2

?

2mc�N

�
; (5)

where �N = (Pz=mc)hA2

?
i=4 is the normalized transverse

emittance, and is related to the determinant of the 4�4 co-
variance matrix.

Expanding this total amplitude yields

A2

? =
x2 + y2

�?
+ �?

�
x0 +

�?
�?

x� �?��L
�?

y

�2

+�?

�
y0 +

�?
�?

y +
�?��L

�?
x

�2

; (6)

where �? = �p
p
1 + L2 and �? = �p

p
1 + L2. We will

see below that L ' hLcanoni=2mc�N . The shape of the
beam envelope is described by �?, �?, and L.

For the Gaussian beam distribution given by Eq. (5), the
symmetric transverse moments matrixM , which is also the
covariance matrix, is

M

mc�N
=

0
BB@

�?=hPzi
��? hPzi
?
0 �?��L �?=hPzi

L � �?� 0 ��? hPzi
?

1
CCA

(7)
where


? � 1

�?

�
1 + �2? + (�?��L)2

�
; (8)

and �N is the normalized transverse emittance. Note that
the expression for 
? is different from that for a quadrupole
even when L = 0, because the moments are not taken in
the rotating frame. The determinant of M simplifies to
det M = [hx2ihP 2

x i � hxPxi2 � hxPyi2]2, and the emit-
tance satisfies detM = m4c4�4N . The net canonical angu-
lar momentum is hLcanoni ' 2mc�NL.

In a vacuum with only magnetic fields, the parameters L
and �N are constant, �0

?
= �2�?, and

2�?�
00

? � (�0?)
2
+ 4�2?�

2 � 4(1 + L2) = 0; (9)

which differs from the single particle case only through the
term 1 + L2. The resulting increase of �? with L reflects
the fact that beams with canonical angular momentum have
a larger spot size for the same emittance.

4 TRANSVERSE BEAM MOMENTS
EQUATIONS

The evolution of an especially simple beam distribution
was considered above; this example provides a model for
analysing more general beams, as well as for parametrizing
simulation results. The moments matrix M for any cylin-
drically symmetric beam has four independent terms, and
can always be expressed in the form of Eq. (7) by a suit-
able choice of �N , �?, �?, and L. In addition, the average
value of Pz is used; for example, we define the average
linear focussing force to be

� � qBz(r = 0; z)

2hPzi ' 0:15
B[T]

Pz[GeV=c]
m�1: (10)

The equations of motion for the beam envelope parame-
ters, now redefined in terms of the lowest-order beam mo-
ments, can be derived by first neglecting multiple scatter-
ing and straggling, and assuming purely deterministic mo-
tion. Then an individual particle satisfies x0 = Px=Pz,
y0 = Py=Pz, and

vz
d~P

dz
=

d~P

dt
= q( ~E + ~v � ~B) + ~v

dP

ds
: (11)

Note that dP=ds, the momentum change caused by mate-
rial, is here defined as a negative quantity.

The averaging over particles which is performed when
taking moments can be interchanged with the derivative,
so that for example dhx2i=dz = h2xPx=Pzi. This yields
coupled equations for the four beam envelope parameters.
Moments such as hxExi are set to zero, but they could be
evaluated by a rudimentary space-charge model.

First, we add the effect of multiple scatter to this formal-
ism. The spread in angles caused by multiple scatter is

S � d

ds
hx02i '

�
13:6 MeV

Pv

�2
1

LR
; (12)

using a Gaussian fit to the Moliere model of multiple scat-
ter. Multiple scatter adds a quantity PzPS to the rate of
change in hP 2

x i and hP 2
y i, leaving other derivatives un-

changed.
In the limit where transverse fields are linear with radius

and coupling to longitudinal motion is weak, the dynamic
equations for the beam envelope are:

�0N = �?
PS
2mc

+ �N
1

Pz

dP

ds
;

�0? = �2�? + �?
qEz
vzPz

� �2
?

�N

PS
2mc

�mc

Pz
�?�N (�?��L)qB

0

Pz
;
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�0? = �
? + 2�(�?��L)� �?�?
�N

PS
2mc

;

L0 = ��?� 1

Pz

dP

ds
� L�?

�N

PS
2mc

;

hPzi0 =
qEz
vz

+
dP

ds
�mc�N(�?��L)qB

0

Pz
: (13)

The longitudinal emittance tends to grow from a variety
of effects including nonlinearities in the RF bucket, Landau
straggling in material, and the differential rate of energy
loss in material (slower particles tend to lose more energy
in the relevant energy range). For a well-bunched beam
having a large longitudinal emittance, with typical values
being 10 – 30 mm, the dominant effect is the slope of the
energy loss curve, with the result that

�0L '
1

v

d

dP

�
v
dP

ds

�
�L: (14)

5 AMPLITUDE CORRELATIONS

For beams having a large transverse emittance, the rela-
tive longitudinal motion of a particle is strongly dependent
on transverse amplitude. This results in a significant non-
linear correlation being required in order for the beam to be
matched into a given RF bucket. This effect on the longi-
tudinal dynamics can be considered without re-evaluating
the transverse motion of the particles.

The average forward velocity of a particle over many be-
tatron oscillations is

�vz ' v

�
1� 1

4
(A2

1 +A2

2)�
p +
1

2Pz
Lcanon��

�
: (15)

For the case where �� = 0 and L = 0, the required mo-
mentum distribution for a matched beam can be described
in terms of a single correlation parameter CP as

P ' P0
�
1 + CPA

2

?

�
+ �P (16)

where P0 is the nominal momentum and �P is a stochastic
term. The matching condition is

CP ' 1

4
�
?

�
1 +

P 2
0

m2c2

�
; (17)

here, �
? is the average value of 
? along the cooling lat-
tice. The importance of this correlation will be examined
in the simulations.

6 FOFO LATTICE

The cooling lattice considered here uses a magnetic field
configuration where the field on axis varies with longitudi-
nal position roughly as a sinusoid. This is here referred to
as a FOFO (“focussing-focussing”) lattice[10]. The prop-
erties of a FOFO lattice can be expressed in terms of the
cell length and the distance of the beam momentum from
the resonant momentum. The magnetic field on axis for the

idealized lattice is Bz(z) = Bmax sin(2�z=L). There is a
resonance at the critical momentum

Pcr[GeV=c] ' Bmax[T]L[m]=48:0; (18)

where there is a phase advance of � radians per half pe-
riod. Here, we focus on the parameter range where the
beam momentum is greater than Pcr. All lattice parameters
are determined by Pz=Pcr and the periodicity L.

For beams with Pz > Pcr, a rough fit to the numeri-
cal solutions can be found, which are correct in the limit
of large momentum and properly exhibit the resonant be-
havior. For large momentum, the matched beta function is
roughly constant and is determined by the average along
the axis of the square of the magnetic field. The beta func-
tion is then given by �? ' 0:197 LPz=Pcr, and the phase
advance per half period is 2:54 Pcr=Pz. A numerical fit for
the phase advance per half period is, in radians,

� ' �
Pcr
Pz

8<
:1� 0:19

"
1�

�
Pcr
Pz

�2
#1=29=

; :

This has the correct resonance and in addition reduces to
the appropriate limit for momentum. A good fit for the
minimum and maximum of the beta function is

�min
max

' 0:197 L
Pz
Pcr

"
1�

�
Pcr
Pz

�2
#�1=2

: (19)

The specific channel used is a version of the cooling
channel used in the Fermilab feasibility study of a neutrino
source. A sketch of the cooling channel geometry as incor-
porated in the simulation is shown in Figure 1. The mag-
netic field has a period of 2.2 m, and the peak magnetic
field on axis is 3.4 T. The nominal beam momentum of 0.2
GeV/c corresponds to Pcr=Pz ' 0:78. Liquid hydrogen
absorbers for ionization cooling are centered around the ze-
roes of the magnetic field, where the beta function has its
minimum value of ' 40 cm. The absorbers are 12.6 cm
long surrounded by 400 �m thick aluminum walls. The ra-
dius of the absorbers is taken to be 15 cm. The RF cavities,
operating at 201.25 MHz, are composed of pairs of pillbox
cavities 32.93 cm long, with 17 cm radius windows com-
posed of 125 �m thick beryllium. To maintain the beam
momentum, the RF cavities have a peak field of 15 MV/m
and are tuned for a phase of 29.7 degrees.

The initial beam has a normalized transverse emittance
of 0.015 � m rad, and longitudinal emittance 0.015 m. The
initial RMS bunch length is 10.5 cm. The beam has a
Gaussian distribution except for a correlation between mo-
mentum and transverse amplitude as described above, with
CP ' 4:3 m�1. This correlation has the effect of raising
the average momentum to 0.227 GeV/c.

7 SIMULATIONS WITH PHASE SPACE
CUTS

The figure of merit used here for the cooling channel is the
number of particles propagating within the 6D phase space
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Figure 1: Sketch of a section of a FOFO cooling chan-
nel (above), with profiles of the beta function and magnetic
field on axis (below).

acceptance of the subsequent acceleration stages. This con-
sists of independent cuts on longitudinal and transverse am-
plitude, where transverse cut is taken to be PzA2

?
=mc <

0:009375 � m rad, and the longitudinal phase space area
is taken to be 0.15 � m. Recall that the typical value for
transverse amplitude is hPzA2

?
=mci ' 4�N . The frac-

tion of the beam kept by each amplitude cut can be ex-
pressed in terms of the ratios xT � PzA

2

?
=2mcepsilonN

and xL, which is similarly defined for the longitudinal am-
plitude. The fraction of particles within the longitudinal
cut is fL = 1 � exp(�xL), and for transverse cut is
fT = 1 � (1 + xT ) exp(�xT ). Values for the total frac-
tion of the beam, fLfT , selected by the given phase space
cuts are shown in Table 1 for several combinations of �N
and �L. Note that the RMS emittance of the portion of the
beam that survives the cuts is reduced from these values.

Table 1: Fraction of beam propagated within 6D phase
space cuts.

fraction at �L =
�N (� m rad) 0:060 m 0:030 m 0:015 m

0.015 0.0284 0.0365 0.0395
0.009 0.0689 0.0887 0.0959
0.004 0.233 0.300 0.325
0.002 0.485 0.623 0.675

Knowledge of the fraction of particles contained within
transverse and longitudinal amplitude cuts can be used to
model the RF bucket and radial apertures. Particles which
are not contained by the RF system are accounted for by ap-
plying a longitudinal cut corresponding to the known size
of the RF bucket. The longitudinal emittance of the beam
before the cuts are applied is determined from Eq. (14).
The scraping against radial apertures is determined by the
beta function, the transverse emittance, and the maximum
allowed radius, and is modelled by equating the maximum
allowed radius to an effective cutoff in transverse ampli-
tude. This cutoff is used to calculated both the fraction of
particles which pass outside the aperture and the resulting

decrease in transverse emittance due to scraping. In this
model, it is assumed that equivalent apertures will inter-
sected by a given particle at a variety of betatron phases, so
that particles at large angles are counted as lost even if the
displacement is small.

The cooling channel performance is first shown for a
matched beam that includes an energy-amplitude correla-
tion. The simulation has been run for two lattices which
differ by the removal of all radial apertures. Figure 3 shows
the effect of the apertures to be small within the accelerator-
defined acceptance region. If the apertures are removed,
most of the particles with high transverse amplitude, which
would have been scraped against the apertures, either are
not sufficiently cooled to fit inside the transverse phase
space cut by the end of the channel or are lost from other
processes. There is good agreement with the moments
equations, although the phase space density predicted by
the moments equations is overly optimistic.
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Figure 2: Normalized transverse emittance of beam. Com-
parison showing effect of radial apertures in simulations
and from moments equations.
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Figure 3: Fraction of initial beam within 6D phase space
acceptance region. Comparison showing effect of radial
apertures in simulations and from moments equations.

A similar comparison is made in Figures 4 – 6 for the
cooling channel with radial apertures, shown for both the
matched beam as above and a purely Gaussian beam with-
out any energy-amplitude correlation. In this case a signif-
icant degradation of beam performance is shown to occur
when the correlation is absent. For a beam with correla-
tions, the moments equations are a closer fit to the sim-
ulation results. Further tailoring of the beam distribution
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function for better longitudinal matching should yield re-
sults approaching the moments equations prediction; how-
ever, improvements beyond this value necessitate concrete
changes in the channel geometry or in the fields. The beam
without correlations is not well contained within the RF
bucket, as indicated by the abrupt variations in the longi-
tudinal emittance and greater particle losses. Note that in-
clusion of a single nonlinear correlation reduces by half the
shortfall in performance between the purely Gaussian beam
and the moments equations predictions.
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Figure 4: Total fraction of initial beam propagated through
cooling channel. Comparison showing effect of correla-
tions in simulations and from moments equations.
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Figure 5: Fraction of initial beam within 6D phase space
acceptance region. Comparison showing effect of correla-
tions in simulations and from moments equations.

8 CONCLUSIONS

A paraxial theory has been developed for transverse beam
moments in solenoidal fields, and applied towards a lat-
tice designed for ionization cooling of muons. This the-
ory is similar in form to the Courant-Snyder formalism
for quadrupole focussing systems. The focussing proper-
ties are described in terms of the solenoid magnetic field
on axis, while the transverse cooling depends on the mate-
rial properties of the absorber placed in the beamline. This
leads to a good prediction of lattice parameters required to
propagate a beam and cooling performance, although the
predicted results are optimistic because the transverse mo-
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Figure 6: Longitudinal emittance of beam. Comparison
showing effect of correlations in simulations and from mo-
ments equations.

ments equations assume perfect matching of the beam in
longitudinal phase space.

In addition, the longitudinal behavior of a beam has been
evaluated in two limiting cases: where the beam is un-
bunched, in which case the average velocity as a func-
tion of energy and transverse amplitude is known; and
for a well bunched beam, where correlations between en-
ergy and amplitude for a matched beam were found. The
energy-amplitude correlation has been shown in the simu-
lations to have a strong effect on achieved cooling perfor-
mance. The apertures specified by the RF cavity design do
not significantly impact the delivery of muons within the
defined acceptance region in phase space, as demonstrated
both in simulations and by using the beam moments equa-
tions extended to model beam scraping.
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