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SOURCES
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1 INTRODUCTION also use cavity modes with eigen-frequencies close to the

' e _ working frequency.
In a cross field dewcg[l] such as magnetron or cross field

amplifier electrons move in crossed magnetic and electr.1  Basic equations

fields. Due to synchronism between electron drift velocityVe are solving a steady state problem of electron beam
and phase velocity of RF wave, the wave bunches the beaffow in self-consistent electromagnetic fields. Total fields
electron spokes are formed and the bunched electrons af@ superposition of static electrie’ and magneticH’
decelerated by the RF field. Such devices have high effields, and “oscillating” electridf(w) and magneticﬁ(w)
ciency (up to 90%), high output power and relatively lowfields as

cost. Electrical design of the cross-field devices is diffi-_, . . oy = S . -

cult. The problem is 2D (or 3D) and highly nonlinear. itE(t) = E'4+Re{E(w)e’"}, H(t) = H'+Re{H (w)e*" }.
has complex geometry and strong space charge effects. Resio, js angular frequency,is time. We separate the elec-
cently, increased performance of computers and availabil, 4y namic problem into two parts. The first part — electro-
ity of Particle-In-Cell (PIC) COde‘-;'[,i-', 3], have made possigiatic potential is generated by “external” anode-cathode
ble the design of relatively low efficiency devices such @Botential and by the static component of tha®charge

relativistic magnetrons or cross field ampliﬁ?;ﬁ? [4]. SiMelectric fields. The second part — the dynamic electromag-
ulation of high efficiency £ 90%) devices is difficult due netic fields have a harmonié* time (t) dependence.
to the long transient process of starting oscillations. Use

of PIC codes for design of such devices is not practical. Ip .2  Static fields

this report we describe a frequency domain method that d@e find the static electric field fromd’ = —V®, using the
veloped for simulating high efficiency cross-field devicespgisgon equation
In the method, we consider steady-state interaction of par- vip = _ P ’ 1)
ticles with the modes of RF cavity at dominant frequency. €o
Self-consistency of the solution is reached by iterations Uny herew is the gradient operatop,is volume charge den-
til power balance is achieved. sity averaged over oscillation peridd = 2 /w. ¢, Is the
electric permittivity of the vacuum.
2 PHYSICAL MODEL 2.3 Oscillating fields

Cross-field devices consist of a cathode and a surroun-&? solve the second part of the problem, we write the time

ing anode. The structure is a cavity with a set of resonan[armomd\/laxwell equationas

eigenmodes. Macroparticles are emitted from the cathode v x F = —jupu |, V x H = jweoE + Jo,.  (2)
and moved by forces of electromagnetic fields. The elec- .

tromagnetic fields are determined by applied external eletlere .. is electric current density,, is the magnetic per-
tric potential between anode and cathode, oscillating fiefeability of vacuum. Oscillating fields inside a cavity are
of cavity modes, and space charge fields. We use geog¥panded in terms of the cavity eigenmodes, (#) and
etry with arbitrary piece-wise plan&oundaries. In order thefast oscillatingelectric potential., as

to solve the electrostatic and elgctrodynamic proplems, we P= Z AE, Vg, H= Z B, H,. 3)
apply methods that do not require mesh generation. Inter- . -

action with magnetic field is determined by uniform mag- Heres is mode indexAs anst are the eigenmode am-

netic field H, which is parallel toz-axis and Orthogonal p”tudes_ Using the expansi0H (3) we get Basson equa-
to the plane of simulation. There are several assumptiofign for the potential: -
Vodu _ pu

that we use to simplify the problem. These assumptions are .

based on the working regime of the devices that we want to Vip = jweo T’ (4)
simulate. Devices will have low current density, are non- . _ _ .
relativistic, and have resonant systems with a relatively loWhere,., is the OSCIl[atlng Spce-pharge d.ensr[y_ Ampli-
density of the cavity modes. Hence, we can neglect ma§{des of the electric field expansion are given by

netic fields due to space charge and cavity modes. We can w I, i E;‘ dv

- . 5)
S (
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2.4 Equation of motion series of plane waves or (for low frequenciBgssel func-
Equation of motion for an electron in crossed-fieldsis  tions Scattering matrices from the regions are combined
. using the generalized scattering matrix technique. Reso-
dp - qu(t) + po@ x H., (6) nantand periodic boundary conditiori_&'; [6] are used to ob-
dt tain resonant frequencies, dispersion parameters, and cor-
wherej is the relativistic momentung, is the charge, and responding fields. We calculate the electric fields on a polar
7 is the velocity of the electron. Current density induced b@rid (only in the region of field-particle interaction), in or-
the electron motion ig’ = ¢.74(), wherer is the position der to speed up calculation of fields for the macroparticle

vector of the electron, antis theKronecker delta function tracking. To obtain field at the macroparticle position we
use 2D spline interpolation.

3 NUMERICAL METHODS _
3.3 Poisson solver

We created several separate program modules to simulatg@ yse an efficient method for solving the Poisson equa-
cross-field device. Firstis aRF field solvethat calculates tion for electric fields in a 2-D, arbitrar”y Shaped geometry.
eigenmodes and eigen-frequencies in the cavity; secondtifie solution is based on the method of moments. Point-
the Poisson solvethat finds electric fields due to eXternaImatching ina piecewise bounded 2D region is app“ed to
potential, static space charge, and oscillating space chargtain the charge density on the boundary. The boundary’s
and third, thetracking modulethat performs tracking of charge density determines the fields and potentials through-
electrons through eleCtromagnetiC fields. For Simulatiorbut the interior region_ We use a Comp|ex representa’[ion
we consider an arbitrary, piecewise bounded 2D geometiyf the fields and potentials in the solution [8]. We apply

periodic boundary conditions to simulate the fields in the
3.1 Planar geometry periodic structure.

Formulation We solve equation (1) in 2D. In the 2D
case it is advantageous to represent the position and field
vector's(z, y) components by a single complex represen-
tation. We will work with functions of a complex variable
z = x + jy. The field strengtl’ can be written in terms of
the scalar potentiab = ®(z) as

~ dd*
Figure 1:Planar geometry. B == @

Herex represents the complex conjugate. An effective line
anf&hargeq (point charge in 2D geometry) has the complex
d potentiakb = (¢/¢o) log z. We approximate the charge dis-

tribution on the boundary of the region as a sum of “step”

N'is the total number of sidewalls and apertures. Period{(l:'nCtionS' we U”Yide each 'eleme.:nt(sidewall and aperture)
boundary conditions are applied to the apertures. The pgt the boundary intaV, straight pieces or "charged lines

riodic boundary allows us to use only part of the structur@ﬂth un(ijform F:hk?rge ﬁ:,n;igy a!ong the péeceamnifoc;mly
and significantly reduce simulation time. In the particuIaF arged straight walvith beginning and end coordinates

case shown in Fig'_.: 1 the geometry has= 19 sidewalls, ! andz», respectively, will produce a complex potential at

two apertures (ports) with starting points= 1, 15, and the pointz,,
the cathode and anode determinedsby 16,17,18,19,1
D(zy) _/
L

The geometry is cylindrical (uniform in thedirection)
as illustrated on Fig.; 1. It consists of planar sidewalls
apertures. The geometry in they plane can be describe
by a set of points; = (x5, y;s), wheres = 1,2..., N'; here

z log(z — 2y )dz, (8)

ands = 2, 3, ..., 15 respectively. .

3.2 REFfield solver o whereL is the contour along the line. Equatioh (8) is inte-
The description of the RF solver that is used in this methogyated analytically. -

is published in [5]. Here we briefly outline its properties.
We use the scattering matrix approach [6] to calculate the Field strength of the charged wall We obtain the

dispersion parameters of the periodic 2D structure, it's regdectric field of thecharged lineby substitutingi(8) intoi(7):
onant frequencies, and the corresponding fields. The fields

are described by functional expansion. Boundary contour E(z)e0 [IZ1 — | (zw B zl)] * o
og .

mode-matching is applied in a piecewise bounded 2D re- p =

21— %2 Zw T2

gion is applied to obtain the scattering matrix and field am-

plitudes [7]. The Galerkin method is used for the modeThe value of the function is undefined on the line’s contour.
matching procedure. The geometry is divided into regiongjowever, for us, the fields inside the region are of interest.
and electromagnetic fields in each region are expanded Tinerefore, the direction of the field (for positive charge)
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on the line’s contour is chosen to be directed inward. Alsdefined and there is no difficulty in solving the system di-
singularities at points; andz, can affect the field's cal- rectly. For macroparticle tracking, the electric field calcu-
culation. Macroparticles with finite dimensions are used tated on polar grid and then interpolated at the macroparti-
avoid this singularity. cle position (same as for RF fields).

Periodic boundary condition We assume that the po- 3-4 Tracking _ _
tential and field strength are repeated on the period’s apefle find a macroparticle trajectory by using the 4th order
tures (Fig.i1). Let! € Y/ andz, € Y. If we shiftthe Runge-Kutta method for integrating the equation of mo-
region to the right so it coincides with the next period, thdion () in polar coordinates. Then, we integrate the com-
coordinatez! will be transformed into coordinatg. The plex electric field of the cavity modes along the trajectory to

periodic boundary condition becomes find coefficients for the cavity’s eigenmodes (5). We mon-
itor energy conservation in order to verify accuracy of cal-

, . 0B(2)) 9P (zh) culation. For that purpose we use total energy that consists
®(21) = (2), on on (10)  of kinetic energy of the macroparticle and integral of static

- N . (due to external potential and static space charge) and os-
We assume the Dirichlet condition on the sidewalls (excefjliating (due to cavity modes and oscillating space charge)

for the apertures) as electric fields along the trajectory. Initial charge and ve-
, , , , , locity ¢ are determined by a space-charge-limited-emission
() =¢(I"), I' ="+ Y/ +Y5. (11)  model and a relaxation scheme.

Integral equations For periodic boundary conditions 3-5  Algorithm o _
(10) and (11) surface charge densitynust satisfy the cou- Ve start simulation by calculating dispersion the curve for

pled integral equations the spatial period of the device (using tRE field solvey.
Then, we calculate electric fields for the eigenmodes. Next,
fF log(z, — 2)a(2)dz = €0(2y ), 2w €T, (using thePoisson solverwe calculate electric field due to
frlog(z] — z)o(z)dz = [plog(zh — z)o(2)dz, external potential. Next, we start iterations usifrgack-
f {(’Hog(z'l—z) }* o(2)dz + o)) = ing moduleto find the macropatrticle trajectories, field inte-
r onyp ) . ! , grals along the trajectories, and electric fields due to space
=— I {%’t‘”dz} o(z)dz — wo(za), charge. Next, we update the static and oscillating fields and
c€T, 2 Y], 2 €Y/, start new iteration.
(12) 4 SUMMARY
in which 21°%6v=2) denotes the normal derivative of

anyp . . . We have written a C++ computer code that uses meth-
log(zy — #) at the pointz, assumingz is fixed; I' =

[" + Y/ + Y3, coordinates:; andz are the same as in
(0); and((z,,) is the external potential.

ods, described above. Accuracy of resonant frequency

calculation byRF field solverfor typical geometries is

~ 0.1%. We tested performance &bisson solveiand

. o . Tracking moduleon diode geometries (without magnetic
Numerical approximation We solve the integral fie|q). \We calculated diode current with typical accuracy

equation numerically, by approximating the source densh_3o in comparison with analytical solution. Testing of

ties by step-functions[9]. Thus we divide the given boundge code on cross- field devices is under way.

ary I' into Nt intervals and assume that the simple source
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