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GENERAL RELATIONSFOR MODE PARAMETERS OF COMPENSATED
STRUCTURESIN THE VICINITY OF OPERATING POINT
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Abstract

In this report the general properties of neighbor modes in
compensated accel erating structuresin the vicinity of oper-
ating point are considered. The dispersion equation for ar-
bitrary compensated periodica structure in the vicinity of
operating point is derived. To obtain it, the field distribu-
tions and frequenciesfor operating mode and coupling one
are necessary. The dispersion curve behavior and neighbor
modes field distributions are investigated both for closed
stop-band and for open one. The expressions for quality
factors, sensitivity and so on are also obtained for both
cases. Non-direct methods for the stop-band width eval-
uation are considered. The validity of conclusions was es-
timated in experiments and proved with direct numerical
simulations

1 INTRODUCTION

The compensated accelerating structures are now widely
used for acceleration of charged particlesfor high energies.
L et remember, that a’ compensated’ is named a structurein
which at operating frequency coincide frequencies of two
modes (0 or 7 type) with different parity of afield distri-
bution with respect to symmetry plane (accelerating and
coupling modes) [1]. Examples of compensated are such
structures as side-coupled, annular-coupled, on-axis cou-
pled, disk and washer, drift tube structure with posts and so
on. These structures combine a high efficiency with a high
stability of the field distribution to deviations in cells pa
rameters and beam loading. In spite of these structures are
different in adesign, they have the common properties. The
main properties of compensated structures are described in
[1]. This report gives results of an additional investigation

2 DISPERSION EQUATION

The general method of the field description in periodic
structureis proposed in [2] and an eigenval ue equation (see
[2]) can be considered as a dispersion one. Restricting con-
sideration by four modes - two 0 modes with eigenvalues
ko1, ko2 and two m modes, accelerating mode with &, Ea
and coupling one with k.., E,., one get equation:

k2, — k? 0 M—a 0
0 k(Z)Q - k2 Y2—a 0 —
det ’Ylfa '72711 klzl - kz ’Yac o 0
0 0 Yoo K2 —K2

where~yi_, 72, , Yac are coupling coefficients ( see[2]). Re-
member E, and E,. arenormalized field distributions. This
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equation is still enough particular, because it approximates
atotal dispersion curve, taking in to account particularity
of the structure (0 modes). More restricted for a partic-
ular structure, but more general for a compensated struc-
tures family is a case when consideration is restricted by
two confining modes and describes a curve behavior in a
vicinity of an operating point. This case we obtain equa-
tion with 0 or = modes:

(k3 — K*)(k2 = k*) = [(1 £ cos 0)vac]* = 0, @
Yac = / J[Ea, i1“01?E_",:]d5.
S2 Ho

Here 6 is a phase shift per structure period. Let rewrite
this equation in terms of frequencies, assuming f, and f.,
effective coupling coefficient v, ~ k.kqVoe, fo =~ fcand
a phase shift deviation ¢ = 6 for 0-mode structures and
¢ = — 6 for m-mode ones.

(fa = PF2 = F2) + faf2n2e = 0. 2

In such definition the equation (2) is the same both for 0
and for 7 operating mode structure. And conclusions are
valid also both for 0- and 7- type operating modes. Further
let assume operating 7 - mode.

3 DISPERSION CURVE BEHAVIOR

The dispersion curve behavior of a compensated structure
in the operating point vicinity strongly depends on a stop-
band width 6f = f. — f, and a group velocity 4. In
general case of
2md dPr
By = c 00 Wy’ &
where P; is a traveling wave power flux (proportional to
the boundary coupling integral in (2), W, - is a traveling
wave stored energy, d is the structure period length. If the
m-mode structure has a mirror symmetry planes, the ex-
pression for 3, can be modified [3]:

w8 fV2 (noH.H. — eoEaEc)dV|
2W W,

(For 0-mode structure expression (4) is not vaid.) Here V,
isavolume of on haf of the structure period. This expres-
sion has been obtained in [3] basing on another approach
and there was a good guide in the development of a new
structure with high coupling coefficient [4].

The closed stop-band. For thecasedf = 0, f, = f. one
can find directly from (2) for the upper f (&) and the bot-
tom £°(¢) branches of the dispersion curve (see Fig. 1):

3(2n_1)f“ 8(2n_1)fb 8(2n)f“ 8(2n)fb
ogn-1) — - 0E(2n—1) > ge(zn) - o€(2n)

By = | 4)
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Figure 1. A dispersion curve behavior in the vicinity of
operating (w) mode. Solid line- § f = 0. Dashed line -
0f =0.02f,.

Let define for modes f%, ¥, of thed,, = 2Z ¢, = —
0., type, where N is anumber of periodsin the section,

AF™ = (f'r?z - fa) - (fa - fgz) = f:fz +f'21 —2f,. (6)
Let AF{™ correspondsto thed f = 0 case:
82f“’b 5 Gm2fa 7T_282f“’b
agz " N2 fo 082

and the upper and the bottom branches of the curve can be
approximated as:

AF™ ~ G = )

G f.&?

The opened stop-band. For the case 6 f = f. — f, (for
further consideration let suppose 6f > 0, f, > f.) there
are two regions at the dispersion curve, depending on x
value:

fet e~ fo

_wpsf  26f
X Zﬂg fa Ve fa ’
For ¢ < x (anearest to the operating point region) the

behavior of the upper and the bottom curve branchesis ap-
proximated as:

=855 ©

 fuBE
mBx

faBy€”
X

The branches come to the operating mode with square low
in & and further will refer this region as square region.

For ¢ > x (amore far from the operating point region)
the behavior of the upper and the bottom curve branchesis
approximated as:

' fa (10)

[~ fatdf +

ﬂgC§ + Gfa§2 6f

2wd T

u,b
PR fe
f fa 52 5

(11)
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In this region the branches of the curve are shifted by ¢ f /2
value, but come parallel with respect to the branches for
anideal case§f = 0 (practicaly linearly, see (8)) and this
region will name further as a linear one. If the mode 6,
belongsto the linear region, the parameter 3 f]m):

u b
(m):ﬂN(m_fm) 12
R (12)
doesn’t depend on m. Deviation of 3 g”” from a constant
value alows to determine the upper boundary of the linear
region.

4 FIELDSDISTRIBUTIONS

In the case of the closed stop-band § f = 0 and for modes
from linear region with an open stop-band the field distri-
butions for modes in the operating point vicinity are so,
that: 5

Ehg%) E. =1 (13)
In a travelling (E+") or a standing (E%",in j-th section
period) wave regimes the field distributions are composed
from accelerating and coupling modes in equal parts,

E%:Ea—LEC’Eg:Eacosjt‘)m—Ecsinjﬂm’ (14)
V2 V2
B E,+ .E, B E, cos jb,, + E.sin jb,,
T — \/5 » =S — \/5

as one can find from (2).
For modes in the square region, similar to (14), one can
derivefrom (2):

R O

L =2=_0 15

By e W
o = Ea—LéEC “ %EG+LEC
€%y’ €%’
(1+37) (T+3)
. E, cosjb,, — %Ec sin j60,,
ES: 52 )

(I+3)

o %Eacosjﬁmﬂ—Ecsinjt‘)m
S— .

1+£)

For modes in the sguare region one component dominate
in the field distribution - the accelerating component at
the bottom branch and coupling component at the upper
branch, because we assume f. > f,.

5 ANOTHER PROPERTIES

Because the fields distributions for modes in linear region
are practically the same as for the ideal case of the closed
stop-band (14), below we will distinguish the parameters
for modes in the linear region and in the square one, as-
suming modes parameters in the linear region similar to
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the modes parametersfor thecased f = 0.
Quiality factor. For 6,,, modes in the linear region, basing
on (14), one can derive for quality factor @) ,,,:

2Q.Q°

u b o _fwaw
Qm Qm Qa + QC
The expression (16) can be used to estimate the coupling

mode quality factor () .. For themodesin the squareregion,
taking into account (15):

(16)

2
(1+5)QuQ.
— X ——, lim Q% =Q.,
Qa‘*‘X_WzLQc Em—0
2
b _ (1+ EX_?)QGQC
- T2
%Q.+Q. ¢

Qm = (17)

: b
lim Qh, = Qa,

Frequencies sensitivity. Suppose x isan arbitrary geomet-
rical parameter of the structure. By using usual perturba-
tion theory and basing on (14), one can show the frequency

u,b

sensitivity coefficients Wa—*; for modesin the linear region
satisfy to:

Ofy  Ofn 1 0f , OF:,
ox ~ Or 29z Oz’
For the modes in the square region, taking into account
(15), one get::

(18)

0fa | &2 0fc &, 0fa , fe
OfY B T2 % Off BB T
8 - EZ b 8 - 52 b (19)
v 1+ % 1+

For al modes, both in the linear region and in the square
one, next statement isvalid:

aft,  OfL _ 9f. _0f

oz oz _8m+8m

Field perturbations. Suppose the j-th period of the struc-
ture has a perturbation AV, leading to the deviation of the
accelerating mode frequency A f,. By using the perturba-
tion theory for amulti-cell cavities[5]:

. (20)

fr2n’ fAV(nQHaHm’ — By By )dV
W(fZ = fa) ’

(21)

one can find, referring with (11, 14) for the contribution

only of two modes 6%, 6%, from the linear region into the
perturbed field E:

E:EQ+ZEmr

> 9 . .
45fAfaNﬂfgmz(§§]0m cos b, Y+ (22)
8BA f, sin j6,, cosib,,

mfBg fa '
These contributions are partially compensated and aresid-

ual (a dope in the perturbed field distribution) is propor-
tiona to the 6 f value. All time exists the coupling mode

E=FE,(1+
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contribution in the perturbed field.
For modes 6%, 6% contributions in the square region, tak-
ing into account (11),(15), one get:

Af.N2372 cos iy, cos i0y,
famzﬂg -

If there are modes in the square region, the struc-
ture loose the properties of the compensated one.
Stop-band width determination. In practice, the square
region at the dispersion curve exists only in untuned struc-
tures and should be removed in tuning by the stop-band
removing. To close the stop-band, one need to know f.
value. A direct f. measurement is not al time possible,
especialy for structures with high ~, value. Let suppose
modes§,,,, 8,, belong to the linear region. From (11) it fol-
lows:

E=E,+E,

(23)

AF™ — AF" = AF" — AF! = 6f.  (24)

Taking into account n> A FJ* = m2AFJ (see (7)), one get:
(AF™ — AF")N?2
(m* —n?)fa
(29)

The stop-band width § f, defined with (25), hasasense”in
average”, but it is the value which we need during tuning
the structure with high ~, value, when intermediate cells
tuning isavoided and a structure section tunes”in average” .

2AF™ — n?AF™
6f:m n ,G:

m2 — n2

6 SUMMARY

In very condensed form the general properties of the modes
in the operating point vicinity are considered. Results are
genera for an arbitrary compensated structure and may be
used for different structures comparison and particularity
understanding. The useful application for results were dur-
ing the tuning of structures with high coupling coefficient,
such as the Disk and Washer structure and the Cut Disk [4]
one.
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