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Abstract 

We consider a technique to determine the initial 
beam conditions of the DARHT II accelerator by 
measuring the beam size under three different magnetic 
transport settings. This may be time gated to resolve the 
parameters as a function of time within the 2000 nsec 
pulse. This technique leads to three equations in three 
unknowns with solution giving the accelerator exit beam 
radius, tilt, and emittance. We find that systematic errors 
cancel and so are not a problem in unfolding the initial 
beam conditions. Random uncorrelated shot to shot 
errors can be managed by one of three strategies: 1) 
make the transport system optically de-magnifying; 2) 
average over many individual shots; or 3) make the ran- 
dom uncorrelated shot to shot errors sufficiently small. 
The high power of the DARHT II beam requires that the 
beam transport system leading to a radius measuring 
apparatus be optically magnifying. This means that the 
shot to shot random errors must either be made small 
(less than about 1%) or that we average each of the 
three beam radius determinations over many individual 
shots. 

1 THE DARHT II BEAMLINE 
The DARHT II beamline[l] consists of a series of 

transport solenoid lens and a kicker system to chop the 
beam to be sent to the X-ray converter target. Between 
the accelerator exit and the kicker is a series of three 
solenoids, lens SO, S2, and S3. Lens S3 matches the 
beam to the kicker system. Solenoid S2 is used in con- 
junction with an insertable beam dump, the “shuttle 
dump”, to blow the beam up to a point that the density 
of energy deposition in the dump is small enough to 
allow the dumps survival. Solenoid SO, between the 
accelerator and S2, is used to generate different beam 
transport conditions for unfolding the initial beam condi- 
tions at the exit of the accelerator. A viewing port just 
in front of S2 is used to measure the beam radius. The 
beam must be several cm in radius to allow the survival 
of the viewing foil. The beam exiting this foil has been 
scattered to the point, that solenoid S2 and the large 
beam emittance induced by scattering in the viewing foil 
is sufficient to diverge the beam on the shuttle dump. 

2 THE PROCEDURE 

We define several terms that will be used in this 
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work in order to avoid ambiguity. A “shot” is a 2 usec 
beam pulse from the accelerator. At minimum, three 
shots are required to re-construct the initial beam condi- 
tions. A measurement of radius can be either a single 
radius measurement or the average value of many indi- 
vidual measurements. To avoid confusion, we will use 
the term “determination” to be the measured radius 
value used in the procedure of beam reconstruction. 
Three radius determinations are required to re-construct 
the beam parameters. These three determinations require 
three shots if each determination is made using a single 
shot, or 3N shots if each determination is the average of 
N radius measurements for each determination. The 
procedure of re-construction unfolds from the determina- 
tions the beam emittance, initial radius and tilt. A single 
unfolding yields a value for the beam emittance, initial 
radius and tilt. Several unfoldings can be averaged to - 
give an improved value of these parameters. 

Consider solenoid S2 set to 7.5 kG to expand the 
beam onto the shuttle dump almost independent of how 
the beam address S2. Consider a viewing foil to be 
inserted into the beamline at the pump port just in front 
of S2. This is the location were we make the radius 
measurements. Take the point for beam re-construction 
to be located 0.1111 meters beyond the exit of the 
accelerator. The transport of the beam from the re- 
construction point to the view port is then given by a 
field free region Ll, solenoid lens SO, and field free 
region L2. 
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Here Li, L2 are the drifts between the re-construction 
point and SO, and SO and the view port respectively, 
C = case , S = sint3 , k = B(2Bp) , and 8 = kL, are the 
solenoid focusing terms. 

Three such transformations are required, one each 
at a given setting of solenoid SO, say 0, 3.5, and 4.5 kG. 
Consider three shots with the initial beam conditions of 
r=O.5 cm, tilt=O, and emittance 3.0 cm-mr, the nominal 
matched design values. For the three SO settings above, 
figure 1, the beam at the view port would be 
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2.3 

d--‘hh o IS t e s” orizontal projection of the beam envelope, 
cr33 is the vertical projection of the beam envelope. 

Here the beam radius is G = 6 as the beam is 
round and in its principle coordinate system, x=y=r. 

3 THE SIGMA MATRIX 

Let cr be the matrix characterizing the phase space 
ellipse bounding all particles in the beam. Let R be the 
linear transformation matrix from the point of beam 
reconstruction to the location of the beam size measure- 
ment. A point (x,x’) on the phase ellipse is given by 

022x2 - 2q*xx’ + (3”X ‘* = det(o) 3.1 

(x,x’) k;: xl-’ [$] = 1 3.2 

In the principle coordinate system of a round beam 
represented by the vector space ( x, x’, y, y’ )T we have 
x = y and x’ = y’ . If the beam is un-correlated between 
x and y, then 031 = 032 = ~~41 = 042 = 0 , and from sym- 
metry (~‘3 = 023 = ~ri4 = 024 = 0 , but possibly tilted in 
the horizontal and vertical phase space, then cr21 and ~3 
would be non-zero, and eq(3.2) becomes 

02’ 0 0 -’ 0” 

021 022 0 0 

(XJ’*Y*Y’) : 

0 0 D33 043 

0 0 043 Q-4 : 
ly’ J 

The four dimensional linear transformation matrix 

3.4 

transforms the sigma matrix by the similarity transform 

(3 = R (J, RT 3.5 

Define the initial reconstruction sigma matrix elements 
of o, for a round beam to be: a = crii = ~733 
b = 021, = 04~~ , c = 022, = 044~ . The s&tare Af the 
measured round beam size 2 = crll I cr33 is given by 

?= [Rf,+RF3] a+Z[R,,R,,+R,,R,,] b+ [R&+Rf4] c 3.6 

Here we have explicitly expanded eq(3.5) in terms of 
matrix eq(3.4) to represent oil in terms of the initial 
beam sigma elements (a,b,c) and the values of the 
transformation matrix. Three sets of radius determina- 
tions, rl, r2, and r3 allow reconstruction of the initial 
beam parameters, a, b, and c. 

r~=C,,a+C12b+C13c 

rz=C2,a+C22b+C23~ 

rf = C,, a + C,, b + C,, c 

3.7 

C,,,C’,, . . . . are the known combinations of the transfor- 
mation matrix elements for the jth determination. 
Cjl= R:l + R:3 j ) [ ] Cj2=[RllR22+R13R14]j. CjF[Rf2+Rfd]j 
Inverting we have the desired initial reconstructed beam 
parameters. 

4 RECONSTRUCTION 

Lets consider a case of beam reconstruction using 
three shots with each radius determination subject to a 
systematic error. As each radius determination would 
have the same error, the reconstructed initial beam 
radius should systematically have that same error, and _ 
the beam ernittance being an area should have twice that 
error. Define the systematic measured radius error to be 
6r , then 

SE&k 4.1 
% R 

Lets now consider a case of un-correlated random : 
errors in the three shots used to reconstruct the beam 
initial conditions. If the beam size is magnified by the 
“optics” of the lens system, then a measurement error 6r 
will be magnified by the system magnification M. As 
the three measurements are un-correlated, the magnified 
errors will not cancel and we expect, for small errors 
that the emittance error should grow as 

?pM$ 4.2 

Note for small M6r , that the emittance curve is a 
straight line with slope M times that of the systematic 
error curve, figure 2. For large MSr the emittance curve 
parallels the systematic error curve. The transition 
between these two regimes appears to be some fractional 
power of the parameter M6r . 

E - = 1 + a z” -b zZn + . . . . . . . 
EO 

4.3 

Sr z=MMR 4.4 

Figure 2 shows the unfolded beam emittance as a func- 
tion of the magnitude of the un-correlated random error 
in the beam size determination. The shape of the curve 
is approximated by eq(4.3) with a=0.2, b=0.004, and 
n=2/3. Let M be some measure of the optical 
magnification of the system and 6r be the radius error. 
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E - = 1 + 0.P - 0.004 z@ 4.5 
&Cl 

Consider our example with M=5.39 SVR=IO% , so = 8.~4 , 
a=0.3, n=2/3, then 

& = a&fz”-l sr 4.6 
EC3 F 

SE = l.goE, ii 16.0 cm-mr 

almost a 100% error in the reconstructed emittance. 

5 NUMBER OF REQUIRED SHOTS 
We consider two strategies for rendering the beam 

emittance from N shots. The first uses one unfolding of 
the emittance based on three radius determinations were 
each radius determination is the average of N/3 shots. 
Call this scenario A. The second strategy is based 
averaging N/3 emittance unfoldings each of which are 
the result of three radius determination with each radius 
determination consisting of a single shot. Call this 
scenario B. The fit to the emittance error curves are 
represented by eq(5.1) 

E = 8, x + a, x” 5.1 

x is the error in percent and E is the emittance in cm-mr. 
This equation is used to fit scenarios A and B. Scenario 
A is well represented by a 0.72 power law. Scenario B 
is represented by a 0.5 - 0.6 power law. Note that the 
lower bounds, are straight lines for large errors given a 
lower bound to the emittance independent of the value 
of the random error, figure 3. 

The reason that making many emittance determi- 
nations with out averaging the radius values gives an 
better value for the average value of the unfolded beam 
emittance is that values of emittance that by the luck of 
the draw (random number sequence) that are negative or 
zero are averaged out by the positive random values. In 
scenario A, were we unfold just one emittance but aver- 
age the radius determinations yield a negative or zero 
value for some random sequences. With just one unfold- 
ing there are no positive values to average this unfor- 
tunate value. 

6 CONCLUSIONS 
The beam emittance is related to the area in phase 

space occupied by the particles comprising the beam. 
The reconstruction of the emittance by a radius measure- 
ment with error Sr should yield an error in the emit- 
tance of at most 3% . With a system of optical 
magnification M the error is 2MSr . Use of the shuttle 
dump diagnostic on DARHT II to determine the beam 
emittance to within a factor of two using a minimum 
number of shots requires either I) the random un- 
correlated shot to shot errors be less than about I%, or 
2) we average 30 to 60 shots using scenario B with ran- 
dom errors some where in the range of 5 to 10 percent. 
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Figure 1. Over plot of the three beam envelopes for the 
example of beam reconstruction with solenoid SO at 0, 
3.5, and 4.5 kG. The radius measurement is made at 
view port located at 7.20 meters. 
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Figure 2. Unfolded beam emittance vs random error in 
the beam radius measuremet. The exact value and the 
range of values for a systematic error is also shown. 
The radial magnification of 5.4 amplifies the error. 
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Figure 3. Required number of shots for a given emit- 
tance range vs radial error using averaging of emittance 
value method. Nominal beam radius 0.95 cm. tilt -0.35, 
and emittance of 8.44 cm-mr. 
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