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1. Introduction

An important linear accelerator requirement, in
order to demonstrate narrow energy spectra, is the
injection of electron bunches of narrow phase spread
and negligible inter-bunch current. This can be
achieved by r-f transverse modulation and clipping of
the beam by an aperture prior to injection into the
accelerator waveguide, i.e., chopper operation. By
magnetically biasing the beam to one side of the center-
line, it is possible to arrange for transmission into the
accelerator at a time during each r-f cycle when the
radial momentum imparted to the beam by the chopper
cavity is passing through zero. The low efficiency of
beam utilization normally associated with this type of
operation, because of the high ratio of collected to
transmitted current, can be considerably improved by
combining the transverse chopping action with a suit-
ably phased longitudinal velocity modulating field as
obtained from a simple prebunching cavity.

Transverse r-f deflection techniques also enable
sub-harmonic bunch selection and injection into linear
accelerators which are used as injectors for electron
synchrotrons. This is achieved by driving the chopper
cavity at the same frequency as the synchrotron r-f
system (which is maintained at a precise sub-multiple
of the linear accelerator fundamental frequency) and
then prebunching the chopped beam at the fundamental

frequency prior to injection into the linear accelerator ?

2. Microwave Characteristics

A natural choice for the r-f deflector in a linear
accelerator injection system is a resonant cavity of
small dimensions which can be located in a narrow
region adjacent to the gun anode. Preferably, the Q
should be high enough to provide adequate deflection
sensitivity at a relatively low drive level but not as
high as to cause significant beam deflection variations
due to small thermal or input power fluctuations.

An electron beam traversing a cavity at right angles
to the r-f electric field will tend to undergo a net zero
deflection because of the compensating effect of the
associated r-f magnetic field.> On the other hand,
cavities which present purely transverse magnetic
fields to the beam offer a simple means of achieving
particle deflection. Although the magnetic deflecting
force is a function of the electron energy, the net
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transverse momentum imparted by the magnetic field
(neglecting transit time) will be independent of axial
velocity (refer to Equation (3.3)). Thus the beam
deflection, and therefore the resulting current trans-
mitted through a clipping aperture, will be less
affected by gun voltage ripple than in a comparable
system using pure transverse electric deflection.

For beam deflection applications, we are primarily
interested in determining

(a) the location of maximum H field in the cavity,

(b) the gradient of the field at this location and over
a short distance orthorgonzal to the field lines
(i.e., in the transverse deflection path of the
beam}),

(¢) the wall losses required to establish a given
magnetic field strength, and,

(d) the cavity quality factor Q so that the response of
the system to thermal and r-f variations can be
assessed.

The location and gradient of the magnetic fields can be
determined from the field equations, and a close
approximation to the power loss - magnetic field
strength relationship can be obtained by considering
the ideal conductor peak current surface densities Jp
(as determined from the tangential magnetic fields)

and applying these to walls of known surface resistivity
(Rg) and area (A), i.e.,

PL= 2l Rs‘JA‘ZA @
where Py, is the power loss averaged over the r-f
cycle. The line integral of magnetic field, taken
around a path which borders on the conducting walls
and then extends to infinity, can be equated to the
enclosed conduction current; and since J and H are
orthogonal, we can write in vector form,

J=nxH (2.2

where n is a unit vector pointing perpendicularly out-
ward from the conducting surface and H is the
magnetic field at the surface. Thus, from Equation
(2.1) we obtain the basic relationship between the
power loss in the walls and the time oscillating mag-
netic field,

PL:

DO f =

- =2
HIA
Rsln x Hl (2.3
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The field equations also enable the cavity stored energy
(U) to be evaluated from the volume integrals

. _€ 2.
(UE> = Zﬂ IEI"dV
nmax V

or (2.4)
K 2
UH =3 Iml=av
max v

since the total energy is stored within both the E and H
fields, and when one is a maximum, the other is zero.

Finally, from a knowledge of Py, and U, the quality
factor Q can be determined from the well known rela-
tionship between stored energy and average power loss
per cycle,

wU
Q=5— (2.5)
pL

2.1 General Expressions for the Electric
and Magnetic Fields

Two simple cavities which offer the desired type of
field distribution are the pill box and sectionalized
rectangular waveguide operating in the dominant mode
as shown in Figure 1. The cavities have been oriented
such that the magnetic fields will be transverse and the
electric field parallel to a longitudinally directed beam.
Both cavities have magnetic fields surrounding the
displacement current represented by the time varying
electric field which is a maximum (E;) on axis and falls
to zero at the conducting walls. In the case of the pill
box cavity, the field components remain constant in
both the azimuthal and axial directions; whereas in the
rectangular cavity the field components are constant
only in the axial direction.

In keeping with convention the rectangular cavity can
be considered as a portion of waveguide which normally
has a transverse electric field propagating in the p
direction but with reflecting planes introduced with xg/z
separation to satisfy the cavity condition of zero elec-
tric field at the walls. Thus for this case and with the
mode defined as the number of half wave variations in
the x, y, z directions, we obtain

= TE - TE
TEnmp Xyz 101

The circular cavity mode is described in the azimuthal,
radial and axial directions, respectively, as

™™ = TM = TM0

fmn ¢rz 10

These conventions will be referred to again when deal-
ing with higher mode fields later in this section.
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It has been shown®'® that resonant frequencies of the

normal-mode fields for a right circular cylinder are
expressed in terms of Bessel function roots such that
the free space wavelength of the resonant frequency is

A= = (2.6)

For TM modes, the fmn integers are defined by the H
field components; and xpy, is the m™ root of Jptkoa) =0,
where k,, is the propagation constant at the cut-off
wavelength. Also, the field equations are defined in
Bessel and trigonometric functions such that for the TM
components that will be of interest in the following dis-
cussion (n = 0) we have

EZ = EOJI(kCr){Asinf(p + Bcosﬁzp}cos m}%ﬁ (2.7)
) % nTz

Hy=-i+ Jé(kcr){Asinﬁqb + Beosto} cos W @9
' EO Jﬁ(kcr) arz

Hr =j o £ kcr {Acosi@ - Bsinllqb} cos = (2.9)

where A and B are constants determined by the mode
orientation

For
For

£=0, A=0 and

([I]]
S

and

~
I
=
w
1
-

For the TEp modes of a rectangular resonator the
propagation constants are given by

2 ( m ﬁ)g (n 7r>")
k™ =(—) +{—
¢ a h

(2.10)

and

> |t
I

Y , AL/2
2t _|f(mrY | (oTy o, (eTY
CRGRCI
[¢]

The associated field components are expressed in trig-
onometric terms such that for the TE modes of interest
(n = 0) we have

sS1n

.- _ swuC fmry oomAx o onTy o L Pz
hy 17 (a)bm a % Th d (2.12)
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in P12 (2.13)

HZ = C cos d

mnx n
cos MY s
a h

~ Z
= =5 () (B7) in 22 cos B cos B (2,19

and

2.2 Comparison of TMg1p and TE1qg1
Deflection Field Characteristics

The field distributions for these simple dominant
modes (see Figure 1) may be derived by considering
the standing wave pattern produced (a) in the cylindrical
cavity by inward and outward radially propagated waves
and (b) in the rectangular cavity by the reflections
between end walls separated by d = Ag/z.

2.2.1 Field Distributions. For the TMgj9 mode,
substituting £ = 0, m =1, and n = 0 into Equations (2.7),
(2.8) and (2.9) gives

5 = EJ (kr
£ o= EJ (k1) (2.15)

b2
E

GLJ " Jl(lxcl)

(2.16)
as the only field components. 7 is the intrinsic imped-
ance of the medium (n = ~Nu/e = 1207 ohm in free
space). In order to satisfy the boundary condition in
this dominant mode, zero electric field tangential to

the wall at r = a, the first root of the J, Bessel function
determines the relationship between the propagation
constant (k¢) and cavity radius (a), i.e., kpa =2.405
which leads to the well known resonance requirement

A = 2.61a (2.17)

The radial variation of H¢ is shown plotted in
Figure 2. It increases in magnitude from zero on axis
to a maximum value (H¢M) at rpy = 0.766a and then
falls to 0. 892H¢M at the cavity wall. This suggests
that, for maximum deflection sensitivity, a beam trav-
ersal hole or radial slot should be located at radius ryy
as shown by egy in Figure 1(a).

The TE1(1 mode field components (Ey, Hy, and Hy)
are obtained by substituting m =1, n=0and p =1in
Equations (2.10) - (2.14) giving,

L

; a . ™= . Tz
Ey = - juwuC o, Sin = sin — (2.18)
_ X Tz
HZ = Ccos , sin d (2.19)

a T Tz
H =-C=sin— cos —= 2.2
X d sin 2 cos d ( 0)
and
A= __2ad (2.21)
) -
a.‘Z + d2

These equations show that the peak magnetic fields Hy,
and Hyy occur immediately adjacent to the walls such
that, at x =0 and a, and z = d/2,

IHZ|:IHOZ|: ¢ (2.22)
andatz =0 and d, and x = a/2,
B a

le|7|Hox|= E IHOZ| (2.23)

Equation (2.23) reveals an interesting feature of the
TEqg; cavity in that with the exception of a square
geometry (a = d) the magnetic field strength alongside
the center of the long walls will always be more

intense than at the center of the short walls. The

beam centerline locations, for maximum deflection,
corresponding to H,, and Hyx are shown as e, and
eHx, respectively, in Figure 1(b). In practice, in
order to take full advantage of the field maxima adja-
cent to the wall surface, a small protuberance in the
wall, parallel to the surface currents, can be provided
to avoid beam collision during that portion of each r-f
cycle in which the beam is being deflected toward the
wall.

The Figure 2 graphs show magnetic field strength
distributions in the directions of beam deflection Hy(1),
Hy(x), and Hy(z), plotted against the respective semi-
cavity dimensions a, x/2, and z/2 and normalized for
equal maxima.

A comparison of more practical value can be obtained
by evaluating the cavity wall losses and interpreting
them in terms of the maximum magnetic field strength
produced by a given level of r-f power coupled in from
an external generator. The TEq g7 wall loss calcula-
tions can be simplified if we modify the magnetic field
equations as follows:

From Equations (2.18) and (2.22) the maximum
electric field (E,) at x =a/2 and z = d/2 is given by

a . . 2an
= = 3 d . .E - —t
E jopH z 15 H 2 (2.24)

(o]

Substituting for Hyy in Equations (2.19) and (2.20) we
obtain

A E
. 0 O T™X | Tz
H =j— —— cos — sin —

Z n 2a a d (2.25)
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sin x cos Iz
2 a (2.26)

2.2.2 Evaluation of Wall Losses. For the TMyyg
mode using Equations (2.3) and (2. 16) the losses in the
flat end caps can be written as

a
1 2
= 2|= A 2
P =2 Rsf,H¢(1) oTrdr
[e)
) 4 (2.27)

2REO jzk d

= 27 —_—

A7 1(Cr)rr
o]

To evaluate this integral, referring to R. V. Churchill
"Fourier Series and Boundary Value Problems, ' 1941,
page 162,

2 2 2 2 2
[l;ll(kcr)] rdr = o l}ll(kca)] + [J2(kca)]
(&)
(2.28)
a
% Jl(kca)JZ(kca)
Also, since
20 Jka)=J (kay+J _(ka)
(kca) nc¢ n-1 ¢ +1 ¢’’’
2 _
(kca) Jl(kca) = Jo(kca) + J2(kca) (2.29)

But to satisfy the boundary conditions for resonance
(see Equations (2.16) and (2.17)) Jo(kca) must equal
zero, giving

2
=T k
JZ(kca) (kca)Jl( ca)

Substituting this in Equation (2.28) gives

a 2

2
2 5 o2
f[Jl(kca)] rdr = J1 (kca) 5

o]

which when substituted into Equation (2.27) gives the
loss in the end caps as

E 2

b= {—2)a% Yk a 2.3
LE A7 )r Iy (k@ (2.30)
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Similarly, for the losses in the circumferential wall,

il

1 2
5 1
Pl =5 Rslll(p(a)l 27mah

2

E() 2
— h
TFRS 1 Jl (kca)a

The total losses in the cavity can now be obtained from
Equations (2.30) and (2.31) to give

it

(2.31)

P =P + P
L LE LW

2

E
0 2 2
= TTRS( 77) J1 (kca) (a” + ah)

The P1,c and Py w equations also enable the distribution
of losses between the wall and the end caps to be deter-
mined. Information of this nature assists in cooling
design and in the selection of materials for the control
of cavity Q. From the above equations we obtain the
simple and useful relationship,

(2.32)

p
Wb (2.33)
PLE a

Finally, an expression relating the maximum magnetic
field and r-f power for the TMgy10 mode can be obtained
from Equations (2.16) and (2. 32) such that

o
J_ 7k a)
4 \ oy
P.=7R U - —17# @ + ah)
9 5k
1 C
and for
2
r H
M o M 0.40
T = 0,766 , ¢ = (2.34)

P B aR (a + b

A similar procedure can be used for the TEqg
cavity to evaluate the losses in the six internal surfaces.
There are equal and opposite charges on the ""beam
inlet" and "beam outlet" end walls, and the resulting
circulating conduction currents have radial flow patterns
from the center of these walls (initially) which become
parallel in the side walls. From Equation (2.3) and
Figure 1(b),
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[V

L

d h h a
2 2
R 2ff|H | dydz + 2 |H | dxdy
S z X
o 0 o 0
d a
+ 2 ff(‘H |2 + \H ‘Q)dxdz
Z X
o o©

and substituting for H, and Hx from Equations (2.25)
and (2.26)

The peak magnetic field can be related to the r-f power
by using Equations (2.24) and (2.23) to give

H 2
0z 4d
P (2.36)

: : 2 2
L R [2h(a3 + dS) +ada” +d )]

oX 4a

L RS [Zh(as + d3) + ad(a2 + d2)] (2.37)

2.2.3 Comparison of Optimized Magnetic Field
Maxima. The TMg1g and TEqy; magnetic field
strengths can now be compared on the practical basis
of '

(a) the same '"h'" dimension along the beam center-
line,

(b) the same r-f power and frequency,
(c) the same cavity material.

Because the "a'" dimension in the TMgy1g mode is
determined by A, only, the choice of an "h'"" dimension
allows the maximum value of the deflection factor

2
(Hq)M/PL)

to be uniquely defined. This can be expressed in A,
normalized dimensions, using Equation (2.34), as

2
H
M 2 0.40
SR T T e

L
o A 2
[}

It should be noted that the surface resistivity Rg is a
function of A, and is defined by the material conductiv-
ity (o) and skin depth (6) as,

For copper 0 = 5.80 x 107 mhos per meter and
p=4m1x 1077 henrys per meter,

-3
. 4.52
R =222 x 10 s

S /}\O

(2.39)

For a given "h" dimension in the TE;g1 mode, how-
ever, the "a'" and "d'" dimensions can be varied over a
wide range while still satisfying the Equation (2.21)
condition for resonance, i.e.,

a AN
e
(0]

Thus, because the
(7o)

deflection factors will vary accordingly, a meaningful
comparison with the uniquely defined TMg109 maximum
field requires that the TE1g] optimum a/d ratio condi-
tions be investigated. Equations (2.35) and (2. 36)
suggest the existence of an optimum condition because
an initial reduction of "a' with respect to ''d' will cause
H,z to increase. Too large a reduction, however, will
result in reduced fields due to the rapid third order
growth of "'d".

(2.40)

DD |

Letting F equal the right hand side of Equation (2. 36)
we have

2

H
d(loz |_oF, oF fda
dd PL od ga \dd

which leads to

2
d [s}
R —| —— )=
s dd PL

alaes 6 s [ 0]

2
I:Zh(a3 + d3) + ad(a2 + d2):|
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Thus, for a maximum or minimum, setting the numer-
ator of this expression to zero, normalizing to A,, and
substituting from Equation (2.39) gives

elefs) +a(2)-

o

Ve T

The TE g1 mode optimum a/d ratio, obtained from
the solution of Equation (2.41), has been plotted against
h/A, as shown by curve A Figure 3. This curve indi-
cates that the optimum ratio is a slow function of the
"h" dimension having a/d ratios of 0.609, 0.626 and
0.632 for h/A, values of 0.152, 0.329 and 0.429,
respectively. Information of this nature substituted
into Equation (2.36) enables the maximum value of

(0 /71)

to be determined.

The advantage of the optimally dimensioned TEj9]
cavity over the other configurations is clearly indicated
by comparison of the TMg1g and TEjp3 magnetic field
maxima optimized as discussed above and listed in
Table I for a range of h/k0 values. Corresponding
magnetic field maxima for TEjp; ""square' cavities
(a = d) are also listed in Table I.

A scaled comparison of the magnetic field gradients
in the direction of beam deflection, Hz(x), Hy(z) and
Hy (1), is shown in Figure 4 for h/A, = 0.329. These
curves show that, for the same power and frequency,
the maximum deflecting magnetic fields for the TMg1g
and "square' TEqg; cavities are 75 and 89.5 per cent,
respectively, of the optimized TE1p1 magnetic field
maximum.

Application of the above theory to an actual design
problem will clarify the terms and assist the reader in
defining the units. For example, let us assume a
matched TEq 4 copper cavity operating at 2856 MHz
with a peak r-f input power of 1 kW. For the optimum
a/d ratio and a value of h/A 4 = .152 (h = 1.60 cm) what
is the maximum theoretical value of H,pr?

From Table I and Equation (2.39) we have,
6. 1/2 1/2
10" A
H _ 1.881 o)
zM )\o 4.52

)\. - O. 105
( ° m)
= 4800 amp per meter

. 4 2
.".B =4800 x — weber per meter
10

=60 gauss
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It should be noted that this value of field is based upon
a theoretical loss calculation which, as explained in an
earlier section, is related to several assumptions
concerning a perfect conductor. In practice the cavity
losses are invariably higher, sometimes up to 20 per
cent, depending on the matching and fabrication tech-
nique; and this causes a reduction of the theoretical
field value (~10%). Furthermore, the indicated values
of "a'", ""d"" and "h" for a given A, are slightly modified
in practice to allow for the detuning effects of beam
aperture geometry, multipactor suppression treatment,
monitoring devices, etc.

Referring again to Table I, reduction of the magnetic
field factors with increasing h/A, for the same mode
should not be regarded as a disadvantage from the
overall point of view of beam deflection. As will be
shown in a later section, for a given beam energy, the
deflection angle is a function of the integrated magnetic
field strength experienced by the particle during trav-
ersal through the cavity, i.e., a product of the cavity
"h'" dimension, and the transit time and phase corrected
value of magnetic field. Thus a cavity with a large 'h"
value can be a very efficient deflector even though its

<H2/PL>

An important practical aspect which may influence
the above optimization procedure and which should be
given careful consideration is the cavity quality factor

Q.

factor is low.

2.2.4 Evaluation and Discussion of Q. A knowledge
of the cavity stored energy and loss enables the Q to be
determined from Equation (2.5). For the TMyq1p mode,
using Equations (2.4) and (2. 15) the stored energy
maxima can be expressed as

c
I}
0o fm

a
e Pomrde = 7€ B 2220 2
h |Z| 2medr = 5 E “ahd C(ka) (2.42)
[0}

and substituting Equations (2.42) and (2. 32) into (2. 5)

gives
_ rput ah
Q=" (n + h)
S

Equation (2.17) enables this to be simplified such that

A5

453
QR = —— MKS
S aQ

(5 U

which for copper cavities reduces to

(2.43)
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6
W

Q = T'—‘ MKS
(5 1)

The volume integral of the electric field Equation (2. 18)
gives the TE191 mode maximum stored energy as

(2.44)

eahd 2
Un="5 (2.45)

and by combining this with the loss Equation (2. 35)

/
2h (:12 + d2>3 :

2h(a3 + d3) + ald(a2 + dz)

QR = 71

s (2.46)

The variation of QRg with cavity length (h/A) for the
TM ;o mode is shown as curve A in Figure 5 and the
TE 191 mode QRg has been plotted against (a/}\o) in
Figure 6 for three specific values of (h/Ag). These
curves indicate that the TM( Q values remain some-
what higher (5 to 10 per cent) than the values for the
corresponding optimally dimensioned TEjq cavities
over a range of h/A_ . Some typical values have been
listed in Table II. For the cavity examples shown in
Figure 4, with h/Ay = 0.329, the QRg curves indicate
Q's of ~15,000 for copper surfaces and a frequency of
2856 MHz. Q values of this magnitude are usually
undesirable in practice because highly stable frequency
and temperature control systems are essential if
troublesome variations of the beam deflection are to be
avoided. Even if these objections were overcome, a
more serious disadvantage becomes apparent when, for
pulsed systems, the excitation time of the cavity is con-
sidered. For example, the rate of build-up of magnetic
(or electric) field strength can be expressed as

-0t/2Q
H = HO <1 - ¢ L)

. (2.47)

where H_ is the steady-state field, H; is the field
strength at time ""t" after the start of excitation and
QL is the loaded Q of the cavity which equals, QO/Z
for matched conditions. If we disregard the mis-
match reflection effects, due to the retarded impedance
growth during build-up, then with a Q; of 15, 000 at
2856 MHz the magnetic field will require 2.5 psec for
build-up to the 95 per cent level. At 1300 MHz a
cavity of 15, 000 Q, will take 5.5 psec to build-up to
the 95 per cent level. Figure 7 shows a typical build-
up characteristic for the magnetic field strength in

a matched cavity of 10, 000 Q, operating at 2856 MHz.
The build-up time (t) at any other frequency and/or
Q, can be obtained by modifying the time (t;) given

by the Figure 7 curve as follows:

Q
285
t:tcx—'—(l x—“G_

(2.48)
1ok T fHz)

In general, a build-up time of several microseconds,
as for the above Q, = 15,000 example, is unacceptable
for accelerator injector cavities (choppers and pre-
bunchers) which receive pulsed drive power from the
same r-f source as the waveguide sections. Optimum
accelerator operation often requires the injection of a
steady-state beam shortly after commencing application
of the r-f pulse power to the waveguide sections.

Under these circumstances the chopper and/or pre-
buncher cavity build-up times must be less than the
waveguide fill-time, e.g., of the order of 0.3 usec at
S-band. The magnetic field build-up problem becomes
even more acute for systems that require bunch selec-
tion using chopper cavities which operate at a sub-
multiple of the accelerator frequency; say 476 MHz to
provide 1 bunch in 6 at 2856 MHz. Clearly in this case,
with build-up times of the order of 20 usec, pre-
excitation with a long r-f pulse width is required.

A technique commonly used to ensure short transient
times of a few tenths of a microsecond at S-band is the
aggrandizement of cavity losses such that Q < 2000.
This is achieved by constructing the cavity (fully or
partially) with stainless steel surfaces or by using
lossy coating materials.® In addition to lowering Q,
the time to reach a given field strength can be reduced
by arranging for a cavity coupling factor 8 > 1. For a
given field strength, however, both techniques require
increased levels of drive power to supply the additional
wall, reflection, and (in some cases) isolation losses.

If the build-up time restriction to Q were removed,
the higher more naturally available Q's and magnetic
fields could be exploited up to the practical limits of
frequency stability. This argues strongly in favor of
transverse deflection cavities for CW operation of
linear accelerators, narrow band-pass r-f generators,
etc., using beam scanning, chopping and/or rotating
techniques. Two important advantages (probably vital,
with high Q cavities) of this type of operation are (a)
the higher degree of system stability inherent with CW
operation and (b) the ease of providing a highly sensi-
tive feedback control system.

The manner in which the TE,; cavity deflecting
magnetic field varies with a/A, for a given r-f power
level and frequency is shown plotted in Figure 6 for
h/k0 =0.152, 0.329 and 0.429. These curves indicate
that selection of the optimum (a/d) ratio, rather than
the ""'square' condition (a = d), not only provides the
highest magnetic field but also results in a lowering of
the Q value.

Because the particle deflection is proportional to the
product of magnetic field and a function of the cavity
'"h'" dimension (see Equation (3.12) in a later section),
for some applications it will be advantageous to trade-
off maximum magnetic field and minimum transit time
for larger ""h' and Q values.

In brief summary then, optimization of the microwave
parameters for a deflection cavity requires
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(a) establishing the largest permissible "h'" dimen-
sion and Q, (the former is usually dependent
upon beam perveance, transit time and system
layout restrictions) and

(b) selecting the most efficient mode and cavity
dimensions to provide the best combination of
minimum beam aberration and a maximum
H2/PL factor.

2.3 Comparison of TMyy and TEqgo Deflection
Field Characteristics

The TMg,( and TEy; magnetic field gradients in the
direction of beam deflection are asymmetrical on either
side of the undeflected beam position (H maxima). For
the TMq1( mode this is a small effect and if necessary
can be easily corrected by a slight radial inward move-
ment of the beam center-line from the ey position
shown in Figure 1(a). With the TE g distribution,
however, (see Figure 2) large beam cross-sections or
deflection angles could result in aberrations that may
be unacceptable. Two examples of beam deflecting
higher order modes, which offer symmetric H field
gradients, are the TMjy19 and TEjg92 shown in Figure 8.
It will be of interest to study the deflection character-
istics of these higher order modes and compare them
with those of the dominant modes.

2.3.1 Field Distributions. Using the same co-
ordinates as in Figure 1, the TMq1g fields of interest
can be obtained by substituting £ =1, m =1, andn=20
in Equations (2.7), (2.8) and (2.9) to give

LZ = LoJl(kcr)st (2.49)
Eo
H, o= - j— J'k r)si .
& j 1 Jl(l\cr)smo (2.50)
E J (kr)
_._0o 1¢ .
Ho =] 7 Tk cos¢ (2.51)

C

Also from Equation (2.6) by substituting xp,, = 3.83 as
the first root of J1(kea) = 0 we obtain the resonant con-
dition

)\0 = 1.64a (2.52)

The field equations provide an interesting description of
the azimuthal and radial variation of magnetic field
which is not immediately apparent from inspection of
Figure 8(a). For example,

(a) When ¢ = 7/2 or 37/2, Hg has a maximum value
(Hgpp at r = 0 and an accompanying but lower
secondary peak, of opposite polarity, at
r=0.918a. Also, H, falls to zero at r = 0.481a
and is 80.5 per cent of H¢M atr =a.
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(b) When ¢ = 0 or m, H¢ is zero for all values of r,
including r = 0.

(¢) H.. is zero for all values of r when ¢ = 7/2, 3n/2.

T
(d) Hr is always zeroatr =a.

These field conditions suggest that, for maximum de-
flection sensitivity, the beam traversal hole (or slot)
should be located at the axis of the cavity as shown in
Figure 8(a) by eHer:

The transverse magnetic field distributions Hy.(r) in
the ¢ = 0 plane and Hy(r) in the ¢ = 7/2 plane have
been plotted in Figure 9. After passing through zero,
the H ;(r) reverse polarity distribution follows a pattern
similar to the dominant mode with a peak intensity just
prior to reaching the cavity wall. The magnetic field
reversal points defined by the polar co-ordinates
r =0.481a, ¢ = 7/2, and 37/2, represent regions of
maximum electric field strength with equal and opposite
"z!'" directed vectors of magnitude given by Equations
(2.49) and (2.52)

0.431 -
E =E J ki = 0.532 E
zM ILo 1(2 1.64) o

The Figure 9 curves indicate that the TM11( mode has
excellent aberration - free characteristics over a large
central region of the cavity. The maximum variation
of transverse magnetic field is less than 5 per cent for
beam diameters up to 0.1 Ao The contour sketches of
Figure 9 show polar plots of Hy and H,., and the minor
distortion of the resultant magnetic field |Hl about

r = 0 reveals the aberration - free qualities of the
mode. At r = 0 the resultant field can be expressed as

2
E /2 E
O

[y —7[(0.5smo)2 . (o.acosmz} = 0.5 2

The TEq, field components are obtained by substitut-
ingm =1, n=0, and p = 2 into Equations (2.10) - (2. 14)
and using Equation (2.24), giving

)
A= ——zad (2.53)
0 / 5 N
da +d
RRY X 2
E, =~ 03 Iy smll—hsinT (2. 54)
)
i
H =1 cos — sin (2.55)
Z 0z 1
N - 5
Hx = - :—11 ”oz sin — c¢os % (2.56)

Unlike the single centrally located TE g} electric field
maxima (Equation (2.18)), Equation (2.54) indicates
two equal and oppositely directed electric field vectors
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for the TEy9 mode with maxima occurring at x = a/2,
z=d/4, and x = a/2, z = 3d/4. (See Figure 8(b).) The
displacement currents, associated with these time
varying E fields, are surrounded by H fields which
produce a pattern in the center of the cavity such that

(a) Hy is the only component of magnetic field, and
its maximum occurs at x =a/2, z = d/2,

(b) the Hy field distribution is symmetric about this
maximum position having a sinusoidal dependence
in the "x'" direction, a cosinusoidal distribution in
the "z" direction, and a constant intensity in the
"y'" direction.

Thus, for deflection applications, a logical location for
beam center-line is as shown by ey in Figure 8(b).

The resonance Equation (2. 53) indicates that for equal
frequencies, and the same "a" dimension as the TEqq
mode, the TE g9 cavity must have twice the ""d'"" dimen-
sion. Also, Equations (2.55) and (2.56) show that the
peak values of magnetic field are related by

THE Ed—ap{ (2.57)

0Z|

Because the TE1(j analysis indicated a strong pref-
erence for H, rather than H, fields, and because of the
absence of wall losses where the E field goes to zero at
z = d/2, there is cause to believe that this higher order
TE |99 mode may possess different optimization char-
acteristics than that of the dominant mode. Itis
conceivable, for example, that if the symmetry char-
acteristics of the H (z) distribution are essential for a
particular application, optimizing the cavity to produce

a maximum
H 2 / P
xM L

factor may result in a lower beam deflecting magnetic
field than the optimized maximum H, field at the walls
of the cavity. Questions of this nature can be resolved,
as in the previous section, first by analyzing the higher
order mode wall losses and then obtaining relationships
between power loss and magnetic field strength.

2.3.2 Evaluation of Wall Tosses. For the TMyqg
mode, using Equations (2.3) and the circumferential

field component Equation (2.50), the losses in the
cylindrical wall can be written

27 h 2
EO 9
— t 3 dd
Rs_[ f (n>J1(kCa) asin‘¢ dzd¢
o o

sﬂ 0 Y 2
— — k
5 7 ahJo ( Ca)

go)
|
[\eRT=

Lw

(2.58)

Similarly, for the losses in the end caps we have

R 27T a E 2 9
P, =22 -2 EI'(k r)] sin’¢
LE 2 n 1'c
o} o

(2.59)
E0 - Jl(kcr) : 2
+ ‘n— —@‘—— cos ¢{rdrde
Since
J (kr
Ik r)=———1(c )+ J (k1)
1 ¢ (k 1) o ¢ ’
c
(differentiation with respect to k )
EV 320%kr 20 k0 k)
0 1 ¢ o ¢ 1'¢c
P =R 71— -
LE s n f ( )2 kr
kr c
0 c
2
+ J (k r)| rdr
o ¢
Rsn E02 2.2
Pre T2 \m /2 KA (2.60)

Equations (2.58) and (2.60) reveal that the ratio of
wall to end cap losses is the same as for the TMqg
mode, namely,

jao)

L

LE

SR

(2.61)

oo}

Therefore, for the same frequency and '"h'"' dimension,
the end cap losses for the TM11g mode will be 59 per
cent higher (2.61/1.64) than the TMq1g cavity.

The TMq4y mode total dissipation is obtained from
Equations (2.58) and (2.60) such that

R 2

E

- 2

PrePrwtPrg =2 (—") 7 2k a)[a2 +ah] (2.62)
2 n o ¢

(This can be compared against the dominant mode, see
Equation (2.32)).

For the TE(o cavity, because of the symmetric
pattern, the surface integrals over the yz and xz walls
can be obtained over the half-dimension limits and then
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multiplied by four.
we have

Using Equation (2.3) and Figure 8

d/2 h 9
sm —Z> dydz
X

ff =0
2
+2[[ s1 —X) dxdy
a
z=0

d/2 a

2
+ 4 cos ——X sin irz
d
¢ 27 2
+ A H sin x cos Z) dxdz
d 0z a d

2
R [E A
. sf oo dh 4ah 1f{d  4a
Py = 8( n) a2+d2 +2<a+d> (2.64)

Thus, for the case of 2a = d, the losses of the yz, xy
and zx walls are proportional to 2h/a, h/a and 2,
respectively.

l\DH—‘

(2.63)

The magnetic fields can be related to the power loss
by using Equations (2.54)-(2.57) and (2.64) to give

H2 2

gz = 4d (2.65)
L RS(:Zh(éla3 + d3) + ad(4a2 + dz):l

H(2>x B 16:12 (2.66)
PL a ’

. . 2 .
RS [2h(4a‘3 + dd) + ad(4a + dz)]

2.3.3 Optimization and Comparison of the Trans-
verse Magnetic Fields for the TM31¢ and TE192 Modes.
For the TM119 mode, Equations (2.50) and ( 2.62) pro-
vide a relationship between H¢ and power loss such that

2
: 2[ i‘kcrﬂ sin’¢

= 2 > (2.67)
L R nd “(k a) [a + ah]
s o ¢

lﬂ:

el

The maximum and minimum conditions obtained for

sing = 1 from
2
] P
(H /7L

, =0
ar

are
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giving a minimum at r/a = 0.481, and

(k1) ¢ c

giving a maximum at r = 0 and a relative maximum at
r/a =0.918. Thus, at r =0, the maximum field can
be defined in )\0 normalized dimensions as

2
I , .
¢ 0.981
PM RS/\O = 29 (2.68)
L a ah
SN N
o A
[o)

For the TE;po mode, Equation (2.57) indicates that

H 2
ox Hoz

if 2a 2d
Also, since Ao = 2a and Equation (2.53) can be re-
written as

(2.869)

it is clear that a/d < 2 and a/d > 2 ratios can be chosen
to satisfy the resonant condition. Therefore, either
the Hy or the H, component of magnetic field can be
made to predominate. The optimum dimensions to
maximize either of these components can be determined
by differentiating Equations (2.65) and (2.66) in a man-
ner similar to the TE{g; example.

To maximize Hy we have

affox \_ oF  oFfda
ddPL T ood da \dd

where F = right hand side of Equation (2.66), and
da/dd = - 4 a/d from Equation (2.53).

Analogous to Equation (2.41), the above provides a
maximum value of magnetic field (Hxpg) for a given
input power when
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(2.70)

The TEqg9 mode optimum (a/d) ratios to provide Hy
field maxima for given h/A, values, as obtained from
the solution of Equation (2.70), have been plotted as
curve B in Figure 3. As before, this proves to have a
slowly changing characteristic with (a/d) ratios of
0.875, 0.881 and 0.883 for h/A, values of 0.152, 0.329
and 0.429, respectively.

The condition to maximize Hgyy can be obtained by
differentiating Equation (2.65) which gives

3 5

2h | a (E) =
2 1+8(d>+4sd

(2.71)
2 2

3 R IR

The solution of this equation is plotted as curve C in
Figure 3; and optimum (a/d) ratios of 0.315, 0.337 and
0.344 are obtained for h/x, values of 0.152, 0.329 and
0.429, respectively.

The maximum deflection fields, H,pj and Hypp, as
obtained by substituting the optimum (a/d) ratios into
Equatiofis (2.65) and (2.66) are shown listed in Table
III. The corresponding magnetic field maxima for the
TM119 mode and for the 2a = d, TE3, mode are also
listed for comparison purposes.

An interesting feature of the Table III data is that,
unlike the dominant mode examples, the circular cavity
is superior to the rectangular cavity in attaining a
maximum magnetic field for a given power loss. Also,
for the TE{y9 mode it can be noted that the Hy field
combines the advantages of both the higher order and
dominant modes; namely, a symmetric distribution
about the beam center-line and the capability of being
optimized to provide the higher of the two transverse
field maxima.

The interchange of predominance between the TE 99
magnetic field components Hyx and Hyy with increasing
(a/d) ratios is shown plotted against a/Ag in Figure 10
for h/x, = 0.152. These curves show that the magnetic
field strengths at the cross-over point a/>‘o =0.707
(2a = d) are ~35 per cent lower than the comparable
"square' (a = d) TEqg; case. (Refer to TableI.) The
maximum magnetic field, Hyp, which is located at the

zy walls (see inset sketch Figure 10), is critically
dependent on the "a' dimension because of its close
proximity to cut-off for the optimum (a/d) ratio. In
contrast, the Hy component has a relatively broad opti-
mum and a 5 to 10 per cent higher maximum value than
HyM for the range of h/), indicated in Table III.

It can be shown that the TEjgg characteristics are
reproduced exactly by the orthogonal mode, TEg(1.-
Repeating the optimization procedures with the substi-
tutions m =2, n =0, and p = 1 in the field equations
merely results in an interchange of roles between the
H,x and H,, field components. The most favorable
magnetic field still occurs at the cavity center and is
directed parallel to the short side walls, i.e., the
direction of beam deflection remains parallel to the
long walls.

A scaled comparison of the TM1319 and TEqg9 opti-
mum magnetic field gradients in the direction of beam
deflections, Heg(r), Hy(z) and Hy(x) is shown in Figure
11 for h/A, = 0.329. It should be noted that only half of
the Hy(r) and Hy(z) distributions are shown and these
fields are symmetric about the maximum intensity
points located at their respective origins, r = 0 and
z =d/2. On the other hand, the H,(x) distribution
is shown plotted from the maximum intensity point at
one wall (x = 0), through the minimum, to Hypp at the
other wall (x =a). The distributions are plotted with
respect to Ay so that field gradients across the beam,
for the various modes, can be compared with conveni-
ence. This subject is discussed in section 2.4.

As before, the choice of mode and cavity dimension,
for a particular application, can be strongly influenced
by the @ value which for these higher orders (compar-
ing equal frequencies) is usually greater than the
related dominant mode.

2.3.4 Evaluation of Stored Energy and @ for the
TMj19 and TE{go Modes. For the TMy,y mode, using
Equations (2.4) and (2.49), the stored energy can be
expressed as

a 2r h
€ 2_2 L2
U=7 ff fEO I (kCr)sm o rdzdodr
0o 0o ©
. (2.72)
€ 2 2
=< E
5 E, hﬂfrJl (kcr)dr
()
. 2
U =28 g %% Pk a) (2.73)
4 [¢) o cC

A comparison with Equation (2.42) indicates that the
dominant mode has 11 per cent less stored energy at
the same frequency and for the same "h'" dimension.

Substituting Equations (2.73) and (2.62) into (2.5)
gives
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2

_ mfehan”
- 1

Rs(a +h)

and using Equation (2.52)

T 722
QR = U/ =

S 1.(5«1(% + 1) (% . 1)

For the TE{g9 mode, because the electric field
Equation (2.54) is the same as for the dominant mode,
the stored energy expression remains the same as
Equation (2.45) i.e.,

(2.74)

]
U= eahd g2
8 0

(The actual numerical values will, of course, be dif-
ferent.) Combining this with the power loss Equation
(2.64) and substituting in Equation (2.5), we obtain

4mahdn

Q =

31d . 4a )
RSKO > (a + 2h) + = (d + 2h)

a d

Substituting for A, from Equation (2.53) gives

) 3/2
™ 2h<4a“) + d2 )

= - (2.75)
o 3 2
2h(da + d) +ad4a + d)

The dependence of QRg on cavity length (h/A,) for the
TM, 1o mode is plotted as curve B in Figure 5. Com-
parison with curve A shows an increase in gain of Q
over the dominant mode for increasing values of "h'".
A graph of QRg versus a/ko for the TE 9o mode and
h/Ay = 0.152 is shown in Figure 10 and indicates a 10
to 20 per cent increase over the TE1gp; mode. (See
Figure 6.)

Theoretical Q values for the TMj1¢ and optimized
TE 192 cavities are listed in Table IV and, for the same
h/)\o, can be compared directly with Table II values for
the TMOlO and TElOl modes.

2.4 Comparison of Beam Aberration Effects

Because of the finite size of the beam, it can be
expected that several factors will contribute to beam
aberrations. Major among these are

(a) the magnetic field gradient across the beam in the
direction of deflection, (This will be both time
and ‘space dependent and as a consequence will
vary with entry phase angle, degree of deflection
and transit time.)
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(b) the magnetic field gradient across the beam at
right angles to the direction of deflection, (In
every case this gradient is less than that of the
optimized maximum deflecting magnetic field,
e.g., refer Figure 4, Hy(x), Hx(z), Figure 9,
H¢(r), Hyu(r), etc.)

(¢) non-cancellation of the velocity modulation effects
of the longitudinal electric fields, especially for
the peripheral particles, and

(d) fringe and leakage fields due to large or incor-
rectly shaped beam apertures.

For a given beam diameter, all of these factors are
strongly related to the choice of mode and, more par-
ticularly, to whether or not the deflecting field is
symmetric about the beam center-line.

Table V compares the deflecting magnetic field
gradients across increasing beam diameters for the
optimized conditions of the previously discussed modes
and h/A, = 0.329. The results are listed as percentage
bins of the appropriate maxima to cover the asymmet-
ric distribution cases, and they disregard the small
transverse displacement of the beam during transit. In
general the data bears out an intuitive observation that,
for equal power and frequency and a given ratio of beam
diameter to free space wavelength, the higher the opti-
mum value of deflecting magnetic field, the worse the
gradient across the beam.

Avoidance of an off-set beam center-line, with
respect to the peak field position, enables the three
symmetric distributions of Table V to exhibit low aber-
ration characteristics. For beam diameters up to
0.15 A, the maximum H gradients are less than 9 per
cent and as the gradients at right angles to the beam
deflection are even lower, it is seen that the TMOlO’
TMllO and Hy optimized TEq|y, modes are more
favorably suited for the deflection of large beams than
the TE,3; mode. On the other hand, the high

2
(HZ M / P L>

deflection factor of the Hy optimized TE;yy mode makes
this a natural choice for small beam applications and
when r-f power is at a premium. Selection of 1 bunch
in 6 for linear accelerator injection into synchrotrons is
an excellent example in this category because the chop-
per cavity operates at 1/6 of the fundamental frequency,
i.e., the ratio of beam diameter to the chopper free
space wavelength is reduced by a factor of 6.

As discussed in the introduction, deflection compen-
sation, due to crossed E and H fields, is avoided by
arranging for the beam to traverse the cavity parallel
to the electric field. For this condition, however, a
second order deflection effect is introduced by the
velocity modulating action of the longitudinal electric
field. For example, consider the higher order modes
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which provide symmetric field distributions about the
beam center-line. When the particle reaches the
center of the cavity, the deflecting magnetic field is a
maximum, and the equal and oppositely directed E
fields on either side of the beam fall to zero. On
entering the cavity, however, the velocity of peripher-
al particles on one side of the center-line will be
reduced and on the other side increased. When the
slower particles reach the center of the cavity, they
will have been deflected away from the center-line
more than the faster particles will have been bent
towards it. At this point the E fields will reverse; and
because the slower particles are closer to the region of
E field maximum, they will experience more voltage
gain than that required to compensate for their initial
loss in velocity. Also, these particles will be entering
regions of lower magnetic field than the faster parti-
cles, which will be continuing to deflect toward regions
of higher H field and lower (under-compensating) E
fields. This process will result in a cross-sectional
focusing force in the plane of deflection.

The above description applies for particles, in azi-
muthal positions along the central plane of deflection,
which pass through the cavity center when the deflecting
magnetic field is at a2 maximum. The process will
change (a) for particles in other azimuthal positions,
owing to additional cross-product terms giving rise to
different velocity modulation and transverse forces, and
(b) with time during the r-f cycle. (This is discussed
further in Section 3.3.)

Beam aberrations during deflection can also be
produced by fringe and leakage fields associated with
the beam apertures in the cavity. With some higher
order modes, for example, the use of beam apertures
which have large dimensions at right angles to the
paths of the end-cap currents can cause transverse
electric field patterns to be established across the
aperture tending to counteract beam deflection.

Bead perturbation techniques are commonly used to
evaluate the deflection and aberration characteristics of
a given cavity design. Although outside the scope of
this report, some bead perturbation data relating to a
TE{y mode are shown in Figure 12. The voltage
transmission characteristics as obtained when a ceram-
ic bead is drawn down the long axis is shown in Figure
12(a). The result of a metal bead drawn through the
cavity parallel to the beam axis at different locations
within the aperture is shown in Figure 12(b). The
reduced perturbation effect due to compensation of the
H and E fields can be clearly noted for the A and C
positions.

An analysis of the effects of aberration at the point of
application of the deflected beam must of course take
into account space charge forces and intervening pa-
rameters such as type of focusing, length of drift
space, amount of beam biasing (if any), etc., and will
depend, therefore, on the particular system layout.

2.5 Comparison of Electric Field Maxima

Apart from deflection applications, the transverse
magnetic field cavities can also be used for r-f signal
extraction, e.g., electron beam position monitoring,
r-f power generation, etc. A comparison of-the opti-
mized E field maxima for various modes is given in
Table VI. If we assume the factor

b

is a constant, then for h/}\o =0.152 the E,y ratio of
TMqq¢ to the TMy;, is equal to 0.705. Also, because
the TM110 mode E;p = 0.582 E, (from Section 2.3.1.)
and the TMy19 mode E,pp = Eg, the Ej ratio of TM110

to TMg1q is equal to 1.21. A scaled comparison of the
radial variation of E, for these two modes is shown
plotted in Figure 13. Location of beam apertures in the
end walls of these cavities, at the peak field positions,
will of course modify these ideal distributions and should
be taken into account in beam interaction analysis.

3. Beam Deflection and Aberration Calculations

For the purpose of consistency, the following analy-
sis will use the same co-ordinates as in Section 2.
Considering the TMq1g cavity, for example, the initial
beam path lies along the "'z'" axis and the H¢ field will
cause deflection in the '"r' direction as shown in
Figure 14. On this basis, we wish to determine the
transverse displacement and momentum of a particle
at z = h, i.e., the plane of departure. A knowledge of
the axial velocity (B8¢c) and drift length (S) then enables
the total deflection (x) to be computed.

3.1 Beam Deflection Derived from Simplified
Equation of Motion

From Figure 14, the transverse momentum (pl)
gained during a small interval of time may be written
Ap

= ﬁec epH  (t)At (3.1

L ¢
where Hy is the effective transverse magnetic field
experienced by an axial particle while traversing a
distance,

Az = ﬁecAt (3.2
h

= H _ sinff + 21z dz

mr = e oM o B A
e o
)
- (3.3)
= euth)MT

where
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T = transit time correction factor
- L cost - cos(f + 0 )
B QT 5% o Tl (3.4

6o is the phase of the magnetic field corresponding to
the particle arrival time at the entry plane z = 0 (for a
convention of peak magnetic field at 8 = 7/2 when the
particle is at the center of the cavity), and 0 is the
transit angle given by

(3.5)

The reduction factor applied to H¢M due to the transit
time correction will be minimized by optimum selection
of the entry phase angle such that

(3.6)

Substituting this into Equation (3.4) and using Equation
(3.5)

2 GT
T = 7= sin 7
%}
M T 2
A
T _ﬂeo . Th
Ty = "o sin _—ﬁk 3.7

The transverse velocity can now be expressed in terms
of the most favorable magnetic field condition by using
Equations (3.3) and (3.7) giving

pe B2 Th
. e 0 .
r= (Vmo) — H¢Ms1n 5 A (3.8)

e o

Defining the deflection angle («) as

T
tana = ﬂ , (3.9
e
A
tang = (—e—) o H . sin—0—
- A
m | yre oM /3e o

which in the MKS system may be reduced to

>

4

- 0 . h
tane = 2.35 x 10 E Hd)Msm ﬁe}\o

(3.10)

Also, from Figure 14, the deflection angle can be
expressed as
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tana = —X (3.11)
(S + E)
2
4 A h Th
° QR - _O = :
=235 x 100 o (s + 2>H¢Msm T (8.12)

e o

For a given system geometry and a knowledge of H¢M,
as obtained from Section 2, Equation (3.12) provides a
convenient and reasonably accurate method of determin-
ing the beam deflection.

3.1.1 Generalized Beam Deflection Equations in
Terms of Drive Power and Cavity Dimensions. Equa-
tion (3.12) may be expressed in the more general
terms of r-f power and cavity dimensions by making
the appropriate substitution for the magnetic field
strength.

For the TM 1y mode, substituting from Equations
(2.68) and (2.52) gives

1/2
h
S + - P
-4 2
X = 2.98 x 10 ” L - sinﬁn—;
R (0.61 + —) e o
s A
6]
(3.13)
For a copper cavity,
R - (4 52 x 10'3) /x
s ’ o’
and Equation (3.13) may be written
1/2
2
S+ b P A 1/2
. -4 2 Lo . Th
X = 44.3 x 10 sin (3.14)
Y X h B A
0.61+— e o
A
o

For a frequency of 2856 MHz and assuming a practical
Q 10 per cent lower than the theoretical value, Equa-
tion (3. 14) becomes,

s BN op
- 7.75x 1077 2 L .
X =0 y 0.064 + n| X
(3.15)
. 29.9h
sin ) meter
de

For the optimized U, TE{y; mode, substituting
from Table I for h/A, = 0.152 enables Equation (3.12)

to be written
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S + ut P 1/2
- 9
X = 2.35 x 10 4 = 1.881(R—L> sin 0 379
S e
(3.16)

which for a copper cavity becomes

S+h

-4
X = 65.7 x 10
B

e

1/2 1/2 . 0.479
P_A sin ———
Lo

(3.17)
At 2856 MHz, assuming a 10 per cent reduction in the

theoretical value of Q, for h = 0.016m Equation (3. 17)
becomes,

-4(S + 0.0 .
X = 35.5 x 10 4(—0——0—8—) PL1/2 sin 0.479 meter

Y B

[S]

(3.18)

For the optimized Hyp TEqg9 mode and a value of
h/7\O = 0,152, substituting from Table III enables
Equation (3.12) for a copper cavity to be written

h
S + — 1/2
-4 2 1/2 0.479
= 49,9 x 10 [——}{P_Ar in ——
X X v ( o ) sin [3

e

(3.19)

For 2856 MHz and a 10 per cent reduction of theoretical
Q, Equation (3.19) becomes

-4 (S + 0.008 1/2 0.4
X = 26.9 x 10 (-_T—)PL / sin 7‘7—3‘ (3.20)

€

For other values of h/}\o, the HzM or HxM substitutions
can be interpolated from the Table I or Table III data.

Graphs of beam deflection versus drift distance for a
2856 MHz, TMjqq copper cavity (Equation (3.15))
having h/}\o values of 0.152 and 0.329 are shown plotted
in Figure 15 for electron energies of 70 and 150 keV
and a peak input r-f power level of 4 kW. It can be
noted that the 70 and 150 keV beams have equal trans-
verse displacements, at S = 14 cm, for cavities with
h/?\o of 0.152 and 0.329, respectively. Furthermore,
unlike the 150 keV beam, the deflection of the 70 keV
beam will actually be reduced when a cavity having the
larger h/?\o value is employed. These effects are due
to an inter-relation between the particle transit time
and transverse momentum at emergence from the
cavity.

The data indicates that the Figure 15, h/}\o values
will not produce maximum deflection for a given r-{
input power and that an optimization procedure should

be applied to the overall trajectory in order to obtain
the ideal value of h/7xO for a given beam energy and

drift length.

3.1.2 Optimization of the "h'' Dimension to Produce
Maximum Deflection for a Given Drift Length and Beam
Energy. For the TMq1g mode, substituting for H
from Equation (2.68) into Equation (3. 12), differentiating
with respect to "h", and equating to zero, we obtain

2
1| a ah| . _7mh h Th
E(A>+251nﬁ?\+(8+2> zsmﬁ>\
o A e A
o)
2
() Lal T h |
}\ 2[3?\00857\ =
[o) A e o e o
0,
giving
S=—§— 3 (a+th h (3.21)
_1+B>\ (a+h)cotanB}\
e o e o

The optimum "h'" dimension to provide maximum
deflection for a given input r-f power may be deter-
mined from the solution of Equation (3.21) for a given
drift length, beam energy and operating frequency. As
Ao = 1.64a, for the TMq;, mode, at a frequency of
2856 MHz Equation (3.21) may be reduced to

h 0.064 + h
2

} . 29.9n (3-22)
29.8 (0.064 + h) cotan 9[39

e e

S = -

-1+

B

For the TE1(2 mode, the deflection Equation (3.12)
may be written

A
hy pe o .
= + =) === —
X (S 2) ym_ Te Hom S 5 A

e o

(3.23)

Unlike the TM11g mode, however, this relationship
involves two dependent variables, 'd'" and "h'", and ¥
will be a2 maximum if

@
<

X _

oh and 5y =0
But,
oH
9X _ xM
2d 0 => od =0 (3.24)
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As before, Equation (3.24) is satisfied by Equation
(2.70) which may be re-written as

(3.25)

where '"a' is a function of ''d' given by Equation (2.53).

Also, for 8y/dh = 0, from Equation (3.23) we obtain

1 X Th T h Th
2Hstm,B>\ +[3>\ (S+2>HXMCOS,8A
e o e o e o

+S+h sin rh dHXM—O
2/ 8 X Tan T
e o

and differentiating Equation (2.66) with respect to '"h"
gives

(3.26)

¢ P
SV S WY L)\ DR DI
oh 2H R -

xM s

-1

. . 2 (3.27)
[,‘Zh(éla3 + dd) + adéa2 + d2>]

Substituting for 8Hyp/8h from Equation (3.27) into
Equation (3.26) and re-arranging we obtain

%[zh(qa:‘ v d®) + ad@a® « .12)} sin J—:
o (3.28)

| 303 22 Th 34 ;
X [Zhua +d”) + adia ’dﬂ('os’!x - (i’ v dYysin 7R
¢ o e 0

The solution of Equation (3.28), after substituting for
'"h'" from Equation (3.25), provides the optimum rela-
tionship between the drift length and the TE1gg cavity
"h"" dimension to produce maximum deflection for a
given beam energy and system frequency.

For the TE; (1 mode, a similar procedure as that
used for the TE1g2 case yields

(3.29)
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and
1 3 3 2 2 7h
j[‘:h(a +d’) +ad@ +d )]sm T
b 2
s--b. ee (3.30)
.‘i‘dli N 7h e oh 3 ]lS '] 2 e Th
- {a )&.mg—A ‘T’\ [_ (@ ~d})+ad@a 4d)]cusﬁ
eo €0

e

the combined solution of which provides the optimum
relationship between drift length and TE g1 cavity "h"
dimension.

Solutions of the TEjp7 Equations (3.29) and (3. 30),
the TM 1, Equation (3.22) and the TE,9 Equations
(3.25) and (3.28) are shown in Figure 16 for an opera-
tional frequency of 2856 MHz. Optimum 'h'" values
have been plotted against drift distance for B¢ values of
0.4759, 0.5584, and 0.6343, corresponding to beam
energies of 70, 105 and 150 keV, respectively. As an
example, for the TMj1( mode and a given input r-f
power, maximum deflection of 70, 105 and 150 keV
beams will be produced at the end of a 20 cm drift length
with cavity '"h'' values of 2.42, 2.82, and 3.20 cm,
respectively.

The Figure 16 graphs reveal that the optimum 'h"
values extend over a broad range, dependent on the
beam energy and drift space length. For design pur-
poses, therefore, it is of interest to determine how the
beam deflection is affected by departure from these
optima, due to a mechanical or Q value restriction or a
major change in beam energy. This is indicated by the
graphs of beam deflection versus cavity "h' dimension
shown plotted in Figure 17 for the above mentioned
beam energies and a fixed drift distance of 20 cm.
These examples were computed for 2856 MHz copper
cavities having 90 per cent of the theoretical Q@ value and
an input r-f power level of 4 kW. The deflection reduc-
ing influence of the beam apertures on the cavity fields
was not taken into account.

The Figure 17 curves also depict an aspect which is of
particular value in certain beam deflection applications:
namely, that for a given mode and a given value of 'h",
the beam energy can be varied as much as two to one
while the beam deflection remains essentially constant,
e.g. in the TM119 mode, for S =20 cm and h = 3.28 cm,
x changes by only + 2-1/2 per cent as the beam energy
is varied over the range 70 to 150 keV.

3.2 Equations of Motion Including the Effects of
Magnetic and Electric Field Variation Along
the Deflection Trajectory of the Particle

The simplified preceding analysis disregarded the
spatial variation of the deflecting magnetic field experi-
enced by the particle during divergence from trajecto-
ries initially directed perpendicular to the region of
maximum deflecting magnetic field. With the transit
times normally encountered in practical devices, the
correction to the magnitude of the deflection due to this
spatial variation is of little consequence. On the other
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hand, if it is necessary to investigate changes in beam
cross-section during deflection, allowance must be
made for the spatial and temporal variations of all the
field components. This is particularly the case for
beams which have relatively large cross-sections with
respect to the cavity free space wavelength.

Qualitative contributions to beam aberration, due to
the electric fields, have been discussed in Section 2.4.
Apart from the longitudinal electric field effects, how-
ever, all of the particles undergoing deflection will
experience additional velocity modulation contributions
due to forces which arise from the transverse velocity
cross products. Also, for particles which are remote
from the centrally located transverse plane passing
through the region of peak deflecting magnetic field, the
cross product velocity modulation effects will be accom-
panied by focusing (and defocusing) forces, i.e., the
orthogonal magnetic field components give rise to
orthogonal transverse displacements as well as velocity
modulating forces.

3.2.1 Cylindrical and Rectangular Cartesian Co-
ordinate Systems. For a single electron (e = - q)
traveling at velocity v through electric (E) and magnetic
fields (B = u H) the equation of motion may be written

d
- (vmol) = e[E_ + VX uﬂ] (3.31)

dt

In cylindrical co-ordinates,

vxpll=pfr ¢ z

therefore

;X = + 7 -
e‘E + v X MH] T e(Er [T HZ uvZH )
)] ) E‘ - 3 H H
"z L( o) r oz * Vz r)

-+ -
+ 7 e(EZ uer¢ uv(pHr)

For the left hand side of Equation (3.31), because y is a
variable

dv
d _ .4 o=
= (Ym V)=V a (Vmo) + Yym

dt o~ o dt (3.33)

and since

we obtain

dv
d = 4 + Yym —=£ - Ym v 51(—]5
qrrmyY) = rjvoqe (ymo)+vm, g o'e at

+

dv
4 —9 ., a¢
f[vq) at (VW) T Ym T T VMY Ty

dv
d )+ ym —=Z
z Vz dt (ymo o dt

+ (3.34)
Equating Equation (3.34) to (3.32) and substituting
. . de¢
V.= T, v, =2 and v(p:ra—t:rd)

gives

d . : . 2
= = - + 3.35
at (ymor) e [Er +pu erzp i Hd)z] »ymorqb ( )

i 9 : _ _ . .
a (ymor o) = e[rE¢ urrHZ + urHrz] (3.36)

d . . ;
d—t(ymoz) e[EZ+urH¢ ur¢Hr] (3.37)

Also, since

.2 .2 2'2'1/2
v+ @

2
c

(3.38)

expanding the derivatives and multiplying Equation
(3.35) by T, (3.36) by ¢ and (3.37) by z, and then add-
ing, leads to

Y= v E

o e . : R

= + +
.Y 5 [rEr r¢E¢ ZEZ] (3.39)
moc

Substituting Equation (3.39) into the expanded derivatives
of Equations (3.35), (3.36) and (3.37), and for the
TMp10, TMqqo modes letting

= =H =0
E¢> Er Z
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gives the following equations (which can be solved

numerically):
. ‘1')2 T 34
= + - - = .
r r 5y uH¢ EZ ) Z ( 0)
0 c
e r 2r ¢
= - - 3.41
¢ ™y [uH 5 E ¢] z " ( )
c
. -2
7=—-1E +uH t-pHro -2 E| (3.42
mY | =z b T 2 Tz ’
o c
e
Y = 5 EZz (3.43)
m ¢
o

In rectangular cartesian co-ordinates

vxpH=plx y z
\% v v
X vy Z
H H H
X y Z

= - + - ' -
“ﬂé(Vsz VZHy) 'u‘Y(VZHX vXHz)+u£(vay vyHX)

and Equation (3.31) can be written

d

— = - 3.44
it (Vmovx) e[Ex + U (Vsz vZHy)] ( )
—d—(mv)—eE+ (vH—vH)] (3.45)
dt Y 0oy [y H zZ X X Z ‘
i(mv)—el:E+ (VH-VH)] (3.46)
at V™Mo T z T HVYy y X '

For the TEjg1, TE;(9 modes,

and letting

v =%, v =y and vz=i

the Equations (3.44), (3.45), and (3.46) can be written

.. .o [s3 .
YX + XY = o /,tyHZ (3.47)
(o]
.. . e € . .
+ =— |E + zH - 3.48
Yy +yvy m_ [y (] xHZ)] ( )
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o
Also, since
PR Bk
=N X ty +z
Y b y
c
} , (3.50
Y > yEy )
m ¢
o]
and the above equations become
ey [ -
X = uH - X E ] (3.51)
m v z 2 'y
o L c
e v
y = - uxH + uzH + - — 3.52
y m Y X z Hz h:4 1 2 Ey ( )
o (&
N
r .
.. ey -
Z = -uH - % E (3.53)
m VY X 2 y
o L. c

With initial conditions, x, éo,
example, with a paraxial beam,

Voo Xo1 Vo1 Zo and, for

V = =
o yo yo yo

the above equations can be solved numerically for a
given time dependence of the sinusoidal fields.

3.2.2 Relationship of Spatial Co-ordinates with R-F
Field Time Dependence. The TEj;o mode will be the
only case discussed in this section, but since the
relationship is common to all configurations the results
can be readily-applied to the other modes of interest.

Multiplying the TEj(9 field Equations (2.54), (2.55)
and (2.56) by a complex time dependence we obtain

ejf(t)

2 21y
E =Ref-; 2 0 sin X gip 22
y ?\O 0z

_2an TX 2Tz o =
= Hoz sin a sin q sin f(t) (3.54)
@)
H = RY{ (H cos x sin 2z ejf(t))
Z oz a d
= II COS _TT_X 33 zﬂ f N
oz o sin q cos (t) (3. 55)
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H o= Ref- 22 0 sin 2% cos 282 ()
d oz a d

2a TX 2TZ
= - —H sin — cos —— cos {(t)
0z a

3 3 (3.56)

Referring to the co-ordinate system shown in Figure
8(b), and defining a positive Hy deflecting field in the
center of the cavity for the first half cycle, then, to
satisfy the conditions,

d 3d
HX>0 for 4<z<4
d 3d
= — < <d
Hx<0 0<z<4, 2 Z
d
x=0 H >0 0 <z<_
Z 2
H <0 g<z<d
Z 2
d
X=a H <0 0 <z <~
z 2
H >0 g<z<d,
Z 2

f(t) must equal + (wt - 7/2) for 0 < wt < 7, i.e.,

2a TX 2T
H =~-—H sin — cos
0z a

Z .
] sin wt

(3.57)
and, choosing the upper sign,

TX 277 T
_ 2an in 22 sin =2 sin {wt -2} (3.58
E X Hoz sin 2 sin ) sin (@t 2) ( )

giving

E < 0for O<z<g and 0<wt<£,
y 2 2

and

il
0 < wt <.

d
2<z<d and 5

E > 0 for
y

3.3 Aberration Computations for Large Beam Cross-
Sections and Deflections

The results of applying the Section 3.2 equations to
TEj91 and TEqgo copper cavities are discussed below.
The parameters chosen for these examples were
Ao =0. 105m, Py,=4kW, 8=0,20m, beam diameters of
0.12, and 0.22,, and beam energies of 70 and 150keV.

The computations were based on an initially cylindrical
beam having negligible space charge; and no_allowance
was made for field perturbation due to the beam aper-
tures.

3.3.1 Beam Energy and Cross-Section Variations at
a Given Drift Distance for TE,,, Mode Deflections.
Figure 18 shows beam cross-section diagrams for sev-
eral deflection examples and an initially parallel beam
of circular cross-section which enters the central
region of a TEj g2 cavity, directed along the "y" axis
(Figure 8b), perpendicular to the Hy and Hy fields. The
diagrams were constructed with the position of the
deflected central ray (No, 1), for each case, normalized
to a common point.

The cross-sections marked A show the aberration
effects at the end of a 20 cm drift distance for a 70 keV,
0.2 A, diameter beam and "h'" dimensions of 1.6 and
2.4 cm. The diagrams marked B compare 70 and
150 keV, 0.1 A5 and 0.2 Ao diameter beams for a 20 cm
drift length and optimum values of "h". The cross-
sections A and B are for particles which reach the
center of the cavity (y = h/2) when the deflecting magnet-
ic field (Hy) passes through peak positive and negative
values, respectively.

A feature which is common to all cases is an elliptic
distortion of the beam cross-section due to a net focus-
ing force in the plane of deflection and a weak defocusing
force in the orthogonal plane. Furthermore, it can be
noted that the centroid of charge (assuming an initially
symmetric radial distribution) has a tendency to migrate
outward in the direction of deflection, as indicated by
the modified location of the initial vertical central plane
shown on the B cross-sections.

The focusing effect and centroid migration, in the
direction of deflection, are caused predominately by
velocity modulation forces due to E;, and zuHy variations
as integrated over the deflection trajectory of the parti-
cle (0 = y = h). The weak defocusing force arises
mainly from the off-axis ( x # a/2) cross product com-
ponent yu H,. The beam energy variations for several
of the Figure 18 orbit examples are listed in Table VII
together with deflection values based on the theoretical

Q.

The Table VII entry angles and transit times corre-
spond to maximum deflection conditions, and the data
will, of course, be modified for other times during the
r-f cycle. Beam energy information of this nature when
integrated over the r-f cycle and combined with the
charge distribution enables the beam coupling charac-
teristics of the mode to be evaluated.

3.3.2 TEqp1 Mode Beam Deflection Aberration

Characteristics. The TEypq mode aberration effects

for 70 and 150 keV deflected beams of 0.1and 0.2 A,
diameter are shown in Figure 19. The initial beam
conditions were chosen as in Section 3.3.1, however,

in order to take advantage of the peak H, deflecting field
(see Figure 2(b)), the "y'" directed beam was off-set
such that the outer periphery (orbit No. 4) was located
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close to the side wall. To avoid beam collision with the
cavity wall, due to deflections of approximately 2 mm
within the cavity, the entry position of the beam was
based on entry co-ordinates for orbit No. 4 of
X, = 0.0025 m and Zo = d/2 for all examples. In order
to illustrate overlap characteristics of the large diame-
ter beam, the deflection cross-section diagrams A, B
and C of Figure 19 were constructed directly from the
deflection values; and unlike the case of Figure 18 these
values were not normalized to a common point.

For entry angles (wty), which produce maximum par-
ticle deflection in the -x direction (a peak positive Hy
field when the beam reaches the center of the cavity),
the cross-section diagrams marked A show a consider-
able defocusing especially in the direction of deflection.
The B diagrams, corresponding to the "straight ahead"
condition with entry phases of (wty + 7/2), also exhibit
this defocusing characteristic but to a lesser degree.

Unlike A and B, the C diagrams at the other deflection
extremity (wt, + 7) indicate the presence of strong
focusing forces in the direction of deflection. The orig-
inal circular cross-section of 0.2 A, diameter trans-
forms through an elliptic stage, shown at S = 10 cm,
into a grossly distorted profile at S = 20 cm. This
effect is due to the relatively large area occupied by the
beam within the cavity. The No. 2 orbit being in a low
deflecting magnetic field environment gains less than
half of the transverse momentum received by the No. 4
orbit. In the case of the 70 keV beam, this difference
is sufficient to cause a deflection cross-over prior to
traversal of the 20 cm drift distance. The wide spread
in emergent energy, caused by large electric field
gradients due to the off-set beam geometry, also con-
tributes to the profile distortion.

Beam energy and deflection values for several of the
Figure 19 beam cross-section examples are listed in
Table VIII for different times during the r-f cycle.

As predicted by the Table V data, the TEjg; mode
compares very unfavorably with the TE1p2 mode for
deflection of large diameter beams. The Figure 19
0.2 Ay beam diameter examples show that at one ex-
tremity of the sweep (wty) even though the No. 4 orbit
deflection is much greater than the entry beam diameter
the resulting defocusing is sufficient to cause overlap
with the straight ahead beam position (wty + 7/2). At
S =20 cm an initial 2.1 ecm diameter spreads to 4.63
and 4.20 cm in the direction of deflection for 70 and
150 keV beams, respectively. Even though the deflected
beam charge density is considerably reduced in the
overlap region, as indicated by the displacement of the
centroid plane, aberration of this type would be unac-
ceptable for applications which require complete cut-off.
On the other hand, at the other deflection extremity
(wtg, + m) the strong r-f focusing and velocity modulation
characteristics may well be exploited (within the bounds
of space charge) by incorporation of the cavity in an
appropriate system.
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3.3.3 TEj01 and TE19p Beam Loading Characteris-
tics During Deflection. Values of emergent beam total

energy at various times during the r-f cycle for the
TEq1g1 and TE (9 cavity examples of Figures 19 and 18
are listed in Tables IX and X, respectively. The listed
values (applicable to 70 keV entry energy) indicate the
manner in which energy is transferred between the r-f
fields and the various beam trajectories. Thus, by
appropriately weighting the orbital data in accordance
with a given cross-sectional charge distribution, it is
possible to determine the beam loading characteristics
of the system.

The apparent net increase in beam energy for these
examples suggests positive beam loading conditions and
supports the theory that beam induced deflection fields
can be readily established under bunched beam condi-
tions. This is of particular interest when considering
the TEM{; pulse break-up mode in linear accelerator
structures; and the above technique provides a means of
studying the starting-up and energy transfer mechanisms
for this phenomenon. This is especially applicable to
the case of band edge interaction* where the v = ¢ line
intersects higher pass band w-§3 curves in close prox-
imity to the zero group velocity cut-off point (8d = 7).
Under these conditions small transverse deflection fields
can be produced by the beam in individual cavities within
a waveguide section; as distinct from the regenerative
backward wave mechanism. Short interval steps in
azimuthal rotation of the deformation plane (tuning plung-
ers) during waveguide tuning, as performed on sonie high
current and long waveguide designs, will tend to avoid
mode polarization and prevent this transverse disturb-
ance from coherently coupling to the beam within subse-
quently located identical design sections. More powerful
suppression techniques include (a) differential absorption
of the higher order modes by internal loading or coupling
into external loads and (b) the use of structures which

tics in the vicinity of the vp = ¢ intercept.

3.4 Some Selected Examples of Transverse Magnetic
Deflection Cavities

A detailed discussion relating to applications of the
cavities presented in this section may be found else-
where 2 Figure 20 shows a typical TEjg9 S-band
chopper cavity and gun anode assembly for an injector
chopper-prebuncher system. A loaded @ of 800 (with
critical coupling) was obtained with this cavity by using
non-magnetic steel for five of the wall surfaces and
OFHC copper (anode plate) for the other. The cooling
tubes, r-f input coupler and tuner (bellows) are clearly
indicated. Water jets for anode cooling and magnet
pole pieces for d-c-biasing of the beam are located in
the apertures around the periphery of the anode plate.

Figure 21(a) shows two end caps and an integral block
assembly which contains two TEqg9 cavities oriented at
right angles to each other. The patterns on the inner
surfaces are multipactor suppression grooves. The



Proceedings of the 1966 Linear Accelerator Conference, Los Alamos, New Mexico, USA

tungsten screen beam traces depicted in Figure 21(b)
were obtained by driving these cavities in phase quad-
rature to provide (a) r-f rotation of a transmitted 120
keV, 3A unchopped beam and (b) bunch monitoring of
the beam after being subjected to progressively
increased chopping action produced by a separate
TE,(o cavity similar to that shown in Figure 20.

Figure 22 shows a 476 MHz, TE; g, chopper cavity
for 1 bunch in 6 selection as used in the injection sys-
tem of a 2856 MHz linear accelerator for synchrotron
injection. The beam aperture, located in a region of
maximum transverse magnetic field, can be noted at
the periphery of the cavity.

The author wishes to thank his colleagues for their
encouragement and support during the course of these
projects and Varian Associates for permission to pre-
sent this material.
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TABLE I

COMPARISON OF OPTIMIZED H FIELD MAXIMA

FOR THE TM010 AND TElOl MODES

TM010 TElOl
R R
h a s a a d s
— — |H _ A —_— = - — A -
A A oM o P d A A HzM o P HxM o

o [¢ o [o} L
.152 | .383 1.397 0.609 |.585 |.961 1.881 1.145
.329 | .383 1.212 0.626 |.590 |.942 1.609 1.008
.429 | .383 1.135 0.632 |.592 |{.936 1.499 0.948
.152 1.000 |.707 |.707 1.672 1.672
.329 1.000 |.707 |.707 1.440 1.440
.429 1.000 }.707 |.707 1.345 1.345

TABLE II
COMPARISON OF Q VALUES FOR THE TMOlO AND TE101 MODES
QRS Q in copper at f = 2856 MHz
h
A . .
o Optimum Optimum

TM010 TE101 TM010 TE101

0.152 | 129.0 123.1 9250 8825

0.329 | 209.5 195.0 15000 14000

0.429 | 239.5 221.0 17160 15800

. NS-12, Page 997,
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Relative Magnetic Fleld Strength

tmm x 2.5mm Ceramic Bead
Drawn Through The Long Axis
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Xo' 0.105m
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Hp xee X3 't
Hg reo re0.4a r-
L l'% 1-% 14
Fig. 11. Gradients of optimized magnetic fields in
the direction of beam deflection for TMllO
and Thloa modes ,
xmln-" J
<ol
ﬁ
0.7
Fig. 13. Radial dependence of longitudinsl electric

Fig. 1h.

field (Ez) for the TMOlO and 'I'Mllo modes.
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mllo cavity and beam deflection paths.
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Fig. 15. TMllO cavity beam deflection versus
drift length.
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Fig. 16. TMllO’ TElOl and TElOE optimum "h" di-
mension versus drift length for various
beam energies at 2856 MHz.
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Fig. 17. Beam deflection versus "h'" dimension for
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Fig. 18. Beam cross-section variations

for TElo2 cavity deflections.

Fig. 19. Beam cross-section variations

for TEJ_Ol cavity deflections,
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Fig. 20. Electron gun anode and chopper
cavity assembly during construction.

e
it

Fig. 2la. Transverse deflection higher order mode duel cavity assem-
bly for beam rotation and monitoring of R-F bunch length.
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3(b) 4(b)

Fig. 21b. Tungsten screen photographs showing beam ro-
tation and R-F chopping at S-band frequency -

Fig. 22. 476 MHz, TElol

magnetic chopper cavity for
one in six bunch selection.

transverse
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