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ABSTRACT 

The focusing properties of the electric field distribution in 
an induction linac gap are identical to those of a bipoten­
tial electrostatic lens if the particle gap-transit time is small 
compared with the time variation of the induced electric field. 
I3ipotentiallenses have been studied systematically only in the 
Ilonrelativistic case. In this paper we present the results of a 
theoretical study of the focusing properties of a symmetrical 
two-cylinder lens with identical radii and negligible separation 
for relativistic electron beams. Analytical formulas derived by 
using the thin-lens approximation are compared with the re­
sults of numerical integration of the relativistic paraxial ray 
equation and found to be sufficiently accurate for practical ap­
plications. 

INTRODUCTION 

Two coaxial cylindrical electrodes with radius b, axial sep­
aration d, and with an electrostatic potential difference .6. V = 
1 ~ - Vj form an acceleration (or deceleration) gap in which par­
ticles with charge q gain (or lose) kinetic energy by an amount 
q.6. V Such a gap configuration, shown in Fig. 1, is also known 
as a bipotential lens since it produces a net focusing force on 
the traversing particles regardless of whether they gain or lose 
energy. The ion-optical properties of such a lens are well known 
for nonrelativistic particle energies; detailed calculations and 
tables of the lens parameters can be found, for instance, in the 
hook by El Kareh 1 

In this paper we extend the existing first-order (paraxial) 
theory of the bipotentiallens to the relativistic regime. Using 
the thin-lens approximation we find analytic formulas for the 
focal lengths fl' h for the case when the gap width is small 
compared to the radius of the electrodes (d « b). The analyti­
cal results are compared to numerical integration, and excellent 
agreement (better than 7%) is found in all cases considered. 

Our results arc of particular interest to single-gap high­
voltage electrostatic acceleration systems and induction linacs 
for electron beams. Induction linacs are being used success­
fully for free electron lasers (FELs),2 as injectors for relativistic 
klystrons,3 and in many other experiments with intense rela­
tivistic electron beams. The accelerating gap voltage in such a 
linac is being produced by a time varying azimuthal magnetic 
field, and from Faraday's law one finds 

, 0\11 
.6.v=V2 -v,j=­

ot' 
(1) 

where \II = f f Bodrdz is the azimuthal magnetic flux around 
the gap. If the flux changes linearly with time by an amount 
\III during a time interval T, i.e. if \II ( t) = \11 0 + \III tiT, then the 
voltage across the gap is given, according to (1), by 

\III 
.6.V = V2 - VI = - = canst. for 0 ::::; t ::::; T. (2) 

T 

Thus, for electrons crossing the gap during the time interval 
T the effect of the induced electric field is practically identical 

*Research supported by U.S. Department of Energy. 
t Permanent address: Institute of Atomic Energy 
Beijing, People's Republic of China. 

with that of an equivalent electrostatic field. For typical pa­
rameters like b = 2 - 10cm, V;::: 100kV, and T = 10 - lOOns, 
electron transit times in the gap are of the order of a nanosec­
ond or less; hence this electrostatic equivalence criterion is well 
satisfied. \\Then the flux change with time is nonlinear, c.g., 
ljJ(t) = \11 0 + \II 1(t/T)2, the electrostatic equivalence criterion is 
still satisfied as long as the gap transit time is negligibly small 
compared to the time T. However, in this case the voltage 
across the gap, and hence the particle energy gain as well as 
the radial focusing effect, will depend on the time t when tllf' 
particle traverses the gap. 

The potential distribution for a bipotentical lells, as illus­
trated in Fig. 1, can be found by solving Laplace's equatioll 
and has the general form l 

(3) 

where Jo( ikr) is the normal Bessel function of the first kind of 
~ero order and the coefficients ak( k) must be determined from 
the boundary conditions for ¢( 1', z). For the special case where 
the two cylinders have the same radius b and their separation 
is negligibly small (i.e., d « b), the potential function may be 
written in the form 

_ Vi + V2 V; - VI roo sinkz Jo(ik1') dk 
¢(1', z) - 2 + iT Jo k Jo(ikb) (4) 

where VI and V2 are the potentials corresponding to the elec­
tron energies before and after the gap traversal, respectively, 
and .6. V = V2 - VI is the potential difference across the gap. 

The potential variation ¢( 0, z) = V (z) along the axis and 
the first two derivatives, V'(z) = dV/dz and VI/(z) = d2 V/dz 2, 
are shown in Fig. 2. Note that for convenience of plotting we 
set VI = 0 and V2 = 1. This variation can be approximated 
with a good degree of accuracy by the expression I 

VI +V2 V2 -VI 
<p(O,z) = V(z) = -2- + -2-tanhnz, (5) 

where n = 1.32/b. The two derivative functions are then: 

V2 -V1 2 
V'(z) = -2-n(1 - tanh nz); (6) 

VI/(z) = n2(V2 - VI )(tanh3 nz - tanhnz); (7) 

RELATIVISTIC PARAXIAL RAY EQUATION 

The relativistically correct paraxial ray equation for an ax­
ially symmetric electrostatic focusing system with no magnetic 
lenses and for particles with zero canonical angular momentum 

Po can be written as4 

" ,', ," 
l' + -(32 r + -(32 l' = O. , 2, 

(8) 

In this equation, l' = r( z) is the radius of the particle trajec­
tory, ' = d/dz, (3 = vic is the ratio of the particle velocity, v, 
to the speed of light,c, and, = (1 - (32)-1/2 is the relativistic 
mass factor defined in terms of the potential function V (z) as 

qV(z) 
,=1+--

2
. 

moc 
(9) 
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Equation (S) can be rewritten as 

," + 91" + 92' = 0, (10) 

with 91 = l'If3 2
, and 92 = 1"/2f32

" 

The term 91" in Eq. (10) can be eliminated by introducing 
the "reduced" variable 

(11) 

which results in the equation 

R"(z) + G(z)R(z) = 0, (12) 

where 
1 2 1, 1'2(1 + h 2) 

G = 92 - 491 - 291 = 2(,2 _ 1)2 . (13) 

In the nonrelativistic limit, one can use the approximations 

2 2qV 
I ~1+--2' 

mac 

,12 ~ (_q_)2 Vf2, 
7110C2 

and obtains from Eq. (13) the results 

3 V f2 

G = 16V2' 

THIN-LENS APPROXIMATION 

(14) 

(15) 

(16) 

Equation (12) can be integrated if one uses the thin-lens 
approximation in which the reduced particle radius in the gap 
region is assumed to be constant; the change of the slope due 
to the lens action is then given by 

1
Z2 1Z2 R; - R; = - G(z)R(z)dz = -R G(z)dz, 

Zl Zl 

(17) 

where ZI and Z2 define the axial width of the gap field and 
R( z) = R = canst in the gap region, as stated. 

From Eq. (5) and Eq. (9) one gets 

[ 
q VI +V2 V2 -VI ]2 

1 + --(~~- + ~~-tanhaz) 
moc2 2 2 

1 + C + B~ + Ae 

1 + D, (IS) 

where 

~ tanh az; (19) 

C (_q_VI + V2)2 + -q-(VI + V2); 
moc2 2 1nOC2 

(20) 

B q [1 q ] (21) --2(V2 - Vd 1 + 2--2 (VI + V2) ; 
mac r110C 

A (_q_V2 - VI)2; 
1I10c2 2 

(22) 

and 

D = Ae+B~+C. (23) 

Also from Eq. (6), one obtains 

1'2 = Aa2 (1 - e)2 (24) 

Substitution of Eq. (IS) and Eq. (24) into the Eq. (13), yields 

_ An2 [3(1 - e)2 (1 - e)2] 
G - 4 DZ + D' (25) 

Therefore, the integral in Eq. (17) becomes 

1
Z2 Aa 11 [3(1 - e) 1 - e] G(z)dz = - D2 + -D d( 

'1 4 -1 
(26) 

Here the limits of the integration are assumed to be outside 
the field region, i.e, we can take ZI -t -00, Z2 -t 00, so that 

tanhazi 

tanhaz2 

-1, ,=,1 = 1 + qVdmoc2, I; = 0, 

1, ,=,2 = 1 + qVz/moc2, I~ = O. (27) 

The integral (26) can be solved analytically, and one obtains 
for the change of the slope by substitution into Eq. (17) 

From the definition (11) one gets for the actual radius on 
either side of the lens 

(29) 

The focal length fz on the downstream (image) side of the 
lens is defined by a particle entering the lens with initial slope 
1'; = 0 and radius '1. If the slope after passage through the 
lens is 1';, we have fz = -'d';' Assuming that R = Rj, we 
obtain in view of (29) the relation 

2 1 ( ) 2 CY(II-1)1/4[11+IZ+21I12-51 12-1 
- ---- 09----
4 Ii - 1 12 - 11 'ii - 1 
1112- 5

1 12+1 "] 09----;) . 
12 -,1 11 + 1 

(30) 

The focal length fl on the upstream (object) side of the lens 
is then determined by the well-known relation between focal 
length f and momentuUl p on each side of the lens, namely 
fzlf1 = P21PI = (,~ _1)I/2/(_1? _l)I/Z. Hence, 

~(I~ - 1)1/4[11 + 12 + t(,II2 - 5) 109 I~ - 1 
4 II - 1 12 - 11 II - 1 
/1/2-5 1 /2+1 "] 

°9~-- -;). 
12 -,1 II + 1 

(31) 

In the nonrelativistic limit, Eq. (30) becomes 

(32) 

which agrees with the formula in Reference 1. 

COMPUTATIONAL RESULTS 

To check the accuracy of the thin-lens approximation used 
in deriving the analytical relations (30) to (32) for the focal 
lengths we integrated Eq. (S) nUUlerically. The action of a 
lens can be represented by the well-known matrix equation 

( 
'2 ) = [ 1 - dz/ fz fI( dil fl + dz/ fz - dl dz/ fd2) ] ( 1'1 ) 
,; -l/fz (fdfz)(I-ddfd ,; , 

(33) 
which relates the projected radius ,mel slope of the outgoing 
trajectory (1'2, r;) at the lens center to ('1, ,;) of the incoming 
trajectory. The parameters d l and dz measure the distance of 
the two principal planes I and II, respectively, from the center 
of the lens. They are both positive quantities if plane I is 
downstream (image side) and plane II is upstream (object side) 
of the lens center. 

The results of the numerical integration for different volt­
ages VI and V2 are tabulated in Table 1. Note that d l is nega­
tive and d2 is positive which implies that both principle planE>s 
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are on the npstream side of the gap center. 
In Table 2 we compare the analytical results for bl12 from 

Eq. (30) with the numerical data. The accuracy of the analyt­
ical formula is seen to be in the range of a few percent which 
is adequate for most practical purposes. 

Finally, in Fig. 3 we plotted bl h versus V21VI for differ­
ent relativistic values of the initial electron voltage VI, and 
for the nonrelativistic (NR) energy regime using the analyti­
cal formulas (30) and (32). For completeness, we included the 
cases where V2 < VI, i.e. where the gap has a decelerating field 
polarity. We Ilote from this figure that the nonrelativistic for­
mula overestimates the focusing strength bl h when the gap is 
accelerating. But, oiurprisingly, there is no difference between 
relativistic and nonrelativistic energies when the gap voltage is 
decelerating the electrons (V2IVI < 1). 

Finally, we would like to note that the nonrelativistic re­
sults are also of interest to induction linacs for ions such as 
accelerator experiments for heavy ion fusion. 5 

REFERENCES 

1. A.B. El-Kareh and J.C.J. El-Kareh, Electron Beams, 
Lenses, and Optics, vol. 1, Academic Press, New York 
and London, 1970. 

2. T . .T. Orzechowski, ct aI., Phys. Rev. Lett., 54, 889 (1985). 
3. A.M. Sessler, S.S. Yu, Phys. Rev. Lett., 58, 2439 (1987). 
4. J.D. Lawson, The Physics of Charged-Particle Beams, 

Oxford University Press, 1977. 
5. D. Keefe, AlP Conf. Proc. Heavy lOll Fusion (Editors: M. 

Reiser, T. Godlove, and R. Bangerter), Vol. 152, p. 63 
(1986). 

Table 1. Numerical results for lens parameters for different 
electron beam voltages Vi and V2 before and after gap crossing. 

VI (kV) V2 (kV) blh d21 h blh -dd11 
100 200 .0296 .159 .0442 .198 

300 .0624 .258 .1183 .355 
400 .0893 .316 .1980 .485 

200 300 .0112 .104 .0142 .117 
400 .0274 .194 .0434 . 214 
500 .0442 .236 .0791 .304 

300 400 .0057 .073 .0071 .08G 
500 .0164 .138 .0227 .162 
GOO .0279 .168 .0436 .228 

500 600 .0024 .056 .0027 .057 
700 .0074 .096 .0097 .111 
800 .0141 .138 .0198 .161 

Table 2. Comparison of analytical and numerical results. 

VI (kV) 
100 

200 

300 

500 

V2 (kV) (bl fz) anal. (blh) num. 
200 .0302 .0296 
300 .OG58 .0624 
400 .0941 .0893 
300 .0109 .0112 
400 .0288 .0274 
500 .0463 .0442 
400 .0056 .0057 
500 .0163 .0164 
600 .0280 .0279 
600 .0023 .0024 
700 .0074 .0074 
800 .0138 .0141 

~ = (blhlanal. - (blh)num. 
(bl h)num. 

~ 

.020 

.054 

.054 
-.027 
.051 
.047 

-.017 
-.006 
.004 

-.041 
-.001 
-.021 

Line 

___ T_rajectory 

Fig. 1. Electric field configuration and trajectory (schematic) 
in an induction gap (electrostatic bipotential lens). 
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Fig. 2. Potential distribution V( z l and derivatives 
V'(z), V"(z) on the axis of the lens (r = 0) . 
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Fig. 3. Focusing strength bl h versus voltage ratio V2/V1 for 
different relativistic electron beam voltages VI and for the 

nonrelativistic regime (NRl. 
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