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Abstract 

The beam break-up instability and 
resistive wall instability caused by 
interaction between beam and induction gap. 
vacuum chamber wall. in a steady-state free 
electron laser in the microwave regime are 
considered. The large energy spread 
induced by free electron laser performance 
is theoretically proved not to lead to 
Landau damping of both instabilities when 
the synchrotron frequency is of order or 
larger than the betatron frequency(This is 
an intrinsic nature of a steady-state free 
elctron laser). 

Introduction 

A microwave FEL is regarded as a possible 
candidate of high power microwave sources 
in the frequency region of 6-30 GHz for 
which the high energy accelerator society 
gets tired of waiting. In fact. the 
collaboration of LLNL and LBL has 
dramatically demonstrated the successful 
single-stage experiment of 35 GHz and 1 GW 
(1). However this single-stage experiment 
is not straightforwardly extrapolated to a 
multi-stage level' which is motivated by its 
use in a two-beam accelerator (2). because 
there are still unsolved many basic 
problems of microwave's extraction without 
RF breakdown(3). phasing of output RF(4). 
or the stability of a driving beam itself 
over a long distance(5). From an 
accelerator physics point of view. an 
essential issue of the two-beam accelerator 
concept is how far a kiloamp electron beam 
in a steady-state FEL can be propagated 
wi th tolerable loss of beam qual i ty. Major 
obstacles to long distance transport of 
kiloamp beams are the so-called BBU and 
transverse resistive wall instability. The 
former arises as a result of interaction 
between beams and induction gap. and the 
existance of wall charges and currents 
induced on the waveguide surface of finite 
conductivity by the displacement of beam 
centroid gives rise to the latter 
instahility. So far the synchrotron 
oscillation in a large bucket of 
steady-state FEL has been supposed to 
induce a relatively large energy spread 
associated with a large spread in the 
betatron wave number k~. eventual I y 
resulting in Landau damping of both 
instabilities. This hypothesis seems not 
true in the case of a steady-state FEL 
where the synchrotron frequency v is in 
general the same order of magnitude as the 
betatron frequency. as described in 
Appendix. Recently it has been 
theoretically proved by the present 
author (5) that Landau damping of RRU due to 
a large energy spread is not expected in a 
steady-state FEL; in addition Whittum(6) 

has demonstrated 
resistive wall 
simulations. 

the same result for the 
instability by computer 

Main purposes of the present paper are to 
summarize the analysis of BBU in a 
steady-state FEL. to extend the techniqe 
used there to the resistive wall 
instability. and to find the characteristic 
distance formulas: L BBU and LR" Based on 
these formulas. the possible limit of 
multi-stage for a proposed FEL is given. 

BBU and Resistive Wall Instability 

BBU 

The analysis is based on the BBU model 
provided in Ref. 7 where the induction gaps 
are treated as discretely distributed along 
the structure with spacing of Lg and the 
BBU cavity mode is characterized by its 
angular frequency w).. qual i ty factor Q. and 
transverse shunt impedance Z.ulQ. The mode 
is excited by a dipole current source term 
which is proportional to the product of the 
beam current IB and transverse displacement 
<s). The transverse position of the beam 
centroid is determined by the linear 
focusing. the cavity fields. and the planar 
wiggl er field. Now. introducing the 
variable r=t-z/c which measures the 
time-delay behind the beam pulse head and 
averaging the perturbed betatron 
oscillation over a wiggler period and over 
one period of induction module. the BBU 
equations become 

( a2 w). a 2) IB 3Z~ 
a7+"Q"ih"+w). L1(r. z)=TaW;. "Q<s(r. z» 

[ a a 2] L1(r.z) 
az (1+ecosvOaz+k~ s"'I'(r. z) Lgro 

('=Ztcp/v) 

(1a) 

(1 b) 

where L1 the z-averaged normalized 
transverse momentum change of the beam 
centroid. s"'I' the transverse posi tion of 
each particle. e and cp the maximum relative 
energy deviation and the initial phase for 
each particle. 10 the Alfven current. v and 
k~ the synchrotron and betatron frequency. 
respect i vely. ro the synchronous energy 
assumed to be constant in the following 
discussion. Here we assume a elude 
rela2io~ among characteristic distance: 
LBBU> kIT. -!>Lg::l>Aw(wiggler wave-length). 
Eq. (1~) represents the time-evolution of 
momentum gain proportional to magnetic wake 
fields in the induction gap located at z 
after pulse head arrival and Eq. (1b) 
represents the orbital-evolution of 
transverse position of i-th particle in the 
slice at pulse position r behind the pulse 
head. 
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Introducing a new variable 
1)"<P=(1+€COSVOI/

2
S •. <p instead of s"<P and 

performing Fourier transform of 
Eqs. (la). (1 b) in the var iable 7: to w. we 
have 

2 2 WWl. 2f (wl. -w +iQ) (2a) 

(2b) 

where transformed quantities are denoted by 
tildes. Nonlinearization of the Mathieu' 
coefficient in a Mathieu-like equation is 
known to admit exact solutions(5); the 
homogeneous so I ut ions of Eq. (2b) are 
approximately written by 

x. (Z) = (1 +Gcos2Z) 1/2exp [± i,f 1~ A 

. -I [( 1 _ G2 ) 1/2 S i n2Z J] 
xSIn 1+Gcos2Z 

Since G<l for 
(1_G2

) 1/2 sinv ,/( 1 +Gcosv 0", 
then ¢=v,-Gsinv'. From 
,fA+ 1 /2",k~/v. we have 

k~-v. sin¢= 
sinv,/( l+GcosvO. 

this result and 

employing terms of the Bessel function. 
Using the Green function G(z. z') evaluated 
from Eq. (3). the solution to Eq. (2b) is 
given by 

n •. <p(w. z)=7(w. z)+,LI' G(z. z')2f(w. z')dz' (4) 
LJgro -(I) 

where 7 is the ini t ial value term. 
Multiplying both sides by (l+€cosv,)I~ • 
substituting the expression 2f=h(w)<?> where 

hew) 

derived from (2b). into Eq. (4). and 
averaging its both sides over the 
distribution of energy spread and initial 
phase. we have a Vol terra equat ion of the 
2-nd kind for X(z) = <?(~ z». 

X(Z)=Q(Z)+Lh(TWk) I: a_Ia 
dz'X(z') 

Q 0 ~"'''-OD -OCt 

xs in[ (k~-vm) (z-z')] 

where the ahbrevi at ions: 1 a X('~)=<~). 
Q(z)=«l r€COSVOI/

27). and a .... =·I .J;(·_P. I1 €)d€ 
are used. Here a flat distrftiLftiori" for € 

(a: maximum deviation) is assumed. 
Ut.ili;>:ing a Falt.ung theorem. the equation 
is solved hy the' Laplane transformation in 
the variable z t.o p. The inverse Laplace 
transformation of X(p) gives 

(5 ) 

From the theory of res idue. the Jntegrapk(w~~ 
evaluated in the form X(z)=~.Aj(w)e 
where p~(w) is the zero-poIiit of the 
denominator in the integrand. The Fourier 
inverse transformation of X(z) gives 

An assymptotic form of the integral may be 
evaluated by the method of pVwerRrwst 
descents to become <s(z»ocA,t<w.)e S • 

where the saddle point w. satIsfies 

dpo(w.) . 0 
dw + ~ 7:= . 

The problem finally 
mathematical problem of 
dispersion relation 

reduces 
solving 

o 

to a 
the 

(7) 

where k~-v. 
three terms 
= a_ I _ I =02/12 
of strong 
leads to 

the summation is dominated by 
of m=O. ±1 :aoo=1-02/B. all 

(o=k~ga/v) . then 2an assumption 
focusing (h/LgTok~. h/LgToV <1) 

. Po(w) 

After tedious mathematical calculation for 
seeking the saddle point[B). the asymptotic 
form 

<S(7:. z» cc (8) 

is obtained. The real part of index. lJI(7:). 
takes its maximum value 

IBlwJ. 0 2 

lJI(7:max ) = ---za-(1-lf)z 

1 [ 0
2

] for 7:max = U· 1B1wl.(1-lf)z 

Eventually. we can arrive at the BBU 
distance as follows. 

LBBU = z/lJI( 7: max ) 

2Lg k pTo (~) 1 
wl.Z.L IB 1-02/B 

For the present 
distance falls in 

case. t.he RRU 
the below range. 

because of 

growth 

(9) 

growth 
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Eq. (3) indicates that the frequency 
modulated betatron oscillation involves the 
infinite number of eigenmodes with the 
frequency Ik ± nJ.J I and the relative 
strength of these modes is determined by 
the Bessel function term which is a 
function of the betatron and synchrotron 
frequencies. and the energy spread. This 
discrete spectrum of oscillation mode tends 
to localize at k~(1-e/2) in the limit of 
k~/J.J~oo. yielding an effective spread in the 
betatron frequency of the beam. The spread 
leads to Landau damping of BBU. When 
k /J.J-1. on the other hand. there are only. 
three dominant modes of k~. I k~±J.J I as above 
derived. It is easily supposed that 
interference among different spectra 
consisting of three lines is quite weak. 

Resistive wall instability 

The analysis is based on the equation 
formulated by Caporaso et al. (8) which 
describes the resistive wall instability. 
Their equation is modified in the orbital 
form 

(
e) IB f!L;; 

/3= me -b3~a TCT o 
(10 ) 

where 1/~ of the right-hand side 
indicates the resistive wall wake function. 
b is the vacuum chamber radius. (J is the 
conductivity of chamber wall material. and 
~o is the magnetic permeability in vacuum. 
Solutions of Eq. (10) are written by the 
term of Green function in the similar way 
to the previous discussion. 

where f •. </> is the initial,lffil.ue........term and the 
abbreviation K(-r:-r')=/3/,fTC(r-r') is used. 
Averaging both sides over the distribution 
of energy spread and initial phase. we have 
a Vol terra equat ion again. 

<O=<f>+~ f a .... f dz'sin[(k~-J.Jm)(z-z')] 
fJm=~(X) -00 

xI:dr'K(r-r')(O (11 ) 

Utili7.ing a Faltung theorem. Eq. (11) is 
solved by two-stages of Laplace 
transformation; in the variable r to q. 

x(z-z')]l{(q)<e(q. z'». 

ann in the variable z to p. 

(K(q)=/3/[q) 

After algebraic calculation. the double 
inverse Fourier transformation leads to 

From the assumption of strong focusing. 
pole of the integrand is evaluated 
follows. 

Thus. 
_ 1 IC/

+ fOO zpo(q)+rq <Ur. z»- 2 dqH(q. pole 
4TC 0'-100 

the 
as 

(14) 

The saddle point of the 
q.. is calculated from 
then 

above integrand. 
zdPo(qs)/dq+r=O. 

Thus. the asymptotic form of the integral 
becomes 

Finally. 
formula. 

we have 

(15) 

the growth distance 

(16) 

where Io=4TC(me/e)/~o is the Alfven current. 

Summary 

The integral equations for the BBU and 
resistive wall instability have been 
evaluated in compact forms. introducing a 
novel technique of nonlinearization of the 
Mathieu coefficient and the dispersion 
relations have been derived from these 
integral equations. . In the region of k~-J.J 
of particular interest. we have calculated 
the poles from the dispersion relations and 
finally arrived at the formulas for the BBU 
growth and resistive wall instability 
growth distances. 1JBBu and LR which are 
functions of the synchrotron and betatron 
frequencies. and the energy spread. From 
the express ions of IJBBu and L R • we real ize 
that enlargement in lJBBU and LR due to the 
energy spread is quite small. Accordingly 
we conclude that a large energy spread 
particular for an FEL in the microwave 
regime doesn' t contr i bute to Landau damping 
of BBU and the resistive wall instability. 
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The growth formulas give LBBu=71m and 
L R=1.47km with typical parameters (10). 
I B=2kA. k~=2n;/3m-l. a(sus)=3.64x10 7 (.Q·m)-I. 
L g=2m. r 0=40. w).Z.J.. =0. 4cm- 1 b (chamber 
radius)=5cm. "(pulse length)=50nsec. The 
value of L BBU is crucial for a steady-state 
FEL employed in a two-beam accelerator. 
One would have hoped beam transport over a 
greater distance for higher conversion 
efficiency from beam power to microwave 
power. This requirement may be satisfied 
in two possible ways. One of those is to 
use induction gaps with the same 
accelerating voltage but slightly different 
deflecting mode frequencies; Landau damping 
of BBU can be expected because of dephasing 
by the frequency spread. The other is to 
introduce a sufficient spread in the 
betatron number caused by nonl inear i ty as 
seen in the ion focusing regime(9). The 
latter has been proposed in Ref. 10 where a 
possibility of ion channel guiding is 
theoretically an~icipated. 

The present theory is general for the 
beam break-up instability in a frequency 
modulated system. For instance. the 
present conclusion can be applied to the 
case of a relativistic klystron(11) (RK) 
which also is motivated by its use in a 
two-beam accelerator. if it is driven with 
a low energy. Unlike a steady-state free 
electron laser. however. k~/IJ in a 
relativistic klystron is proportional to 
rl/2; therefore. Landau damping will be 
expected when an RK is operated with a 
suff icient large r· LBBU(a) and LR(a) in 
such a case must be analytically derived by 
solving the original dispersion relation or 
obtained by computer simulations. However. 
both are out of the present scope. 
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Appendix 

The ratio of the betatron frequency to 
the synchrotron is described by 

where c is the velocity of light. BO' and E. 
are the magnetic and signal field 
amp I i tudes. respect i vely. AO' and As are the 
wiggler period and the signal wave length 
in vacuum. respectively. and b the vertical 
dimension of waveguide. The second term on 
the right-hand side is normally much 
smaller than unity. The power density 
requirement (- GW/m) in the proposed 
scheme(12) where permanent wiggler magnets 
with the nominal surface field of -1 Tesla 
are employed yield 0<k~/1J<1/2. 
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