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Abstract

A good method for mapping multipole magnets (suggested
by K. Halbach) is to measure the magnetic field on the sur-
face of a constant radius cylinder centered on the magnet axis.
This paper presents one approach to this mapping concept using
a magnetic field description that identically satisfies Maxwell’s
equations. The fleld map is used to determine the magnetic
scalar potential function written in a form that reduces to a
standard multipole expansion for an axially independent field.
This scalar potential function is used in particle tracking codes.
An example and a brief error analysis are included.

Mapping Method

Figure 1 illustrates the mapping method using sensing coils
(Hall probe mapping is conceptually the same as the coil method).
Coils C, and Cy, which measure changes in the radial and az-
imuthal magnetic flux through the coils during angular coil ro-
tation, are stepped axially through the magnet including the
fringe-field region. At each axial position, the cylinder holding
the sensing coils is rotated and the changes in magnetic flux
versus angle are measured and Fourier analyzed. The Fourier
amplitudes are used to determine the magnetic scalar potential
function (see below). The axial length éz¢ of the sensing coils
should be small compared to the magnet aperture in order to
measure the magnet fringe field with maximum experimental
sensitivity and to simplify the analysis.

\
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Fig. 1. Schematic of magnet-mapping coil geometry.

* Work supported and funded by the US Departnient of Defense, Army
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Signals from C; and Cy are proportional to the change in the
total magnetic flux (0®/90) through the coils during rotation.
The magnetic flux measurements, at axial coil position z¢ = z;
(i = 1,..., number of measurements), are Fourier analyzed to
give the amplitudes A and B at each location where

(|
a;;zr lio=a = Z [A,,, (zi)sin(mbc) + B, (2i) cos(mbc)], (1)

m

d%ec,
Db

som=z = Z [Ag,. (zi) sin{méc) + B, (z:) cos(mbc)] , (2)

m

(m is an integer denoting the harmonic number; subscript r
refers to the radial flux measurement; subscript € refers to the
azimuthal measurement; and 6¢ is the coil angle). If the coils
contain multiple loops, the measured values must be divided by
the number of loops.

Analysis Equations

The magnetic field in a source-free region can be calculated
from a scalar (V) potential function where, in cylindrical coor-
dinates,

B=-VV=- (a,.a,. + aggf + K-0;> 14 (3)
;

(O, denotes the partial derivative with respect to r, ete., and the
a’s are unit vectors in cylindrical coordinates). Because V-E=0
in a source-frec region, thie scalar potential satisfies the Laplace
equation and can be written as!

o T "L ml(—r29)
Vir.6,z) = %: (7'a> §22“11!(n+m)!
x [cos(mO)F(z) + sin{m8)G .(2)] (4)

where r, is the magnet aperture radius. The scalar potential in
Eq. (4), which consists of a power series expansion in r for each
harmonic number m, is fully determined by the arbitrary nonsin-
gular functions Fy,(2) and G.,(2). These nonsingular functions
satisfy the boundary conditions that all the derivatives of " and
G vanish at z = Foo. (Periodic boundary conditions can also
be imposed as in the example given later.) In ST units, V' has
the dimensions of tesla-meters; therefore, Fi, and G, also have
the units of tesla-meters. [Note that (r202) is dimensionless.]

Equations (3) and (4) are combined to obtain the magnetic
field. We ignore B, and concentrate on B, and By. The total
flux @ through the coils C, and Cy, determined from the arca
integrals, is

8c+66¢ zc+6zc
de, :/ rcd9/ B,dz|= s (5)
8c —b6c zc
re :c+bzc
b, :/ dr/ Bydz|s=sp, - (6)
re—6rc zc

Measurements of 9%/08 are made at various z positions
(the highest density of measurements are made in the magnet
fringe-field region where F and G are rapidly varying). From
Egs. (5) to (6) and rearranging, we have
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oo zc+bz2c
agcr :-_Z Z I (m,n) /;C

m n=0

[sin(mﬁc)rzc?‘az?"Fm(z) - cos(ch)1‘2c"03"Gm(z)] dz,(7)

a;;zﬁ :z Z Kg(m,n) [

m n=0 c

ze+bze

[cos(mﬁc)ré"(?f"F,,,(z) + sin(mbc)rg 02" Gm(2)] dz ,(8)

where
sin(méfc)(—1)"(m + 2n)m! rg

22n=1Ipl(n 4+ m)!

m+2n
(=1)"m?m! [1 - (J—Qr =81, ) ]

K. (m,n) =

©)

I
m
TG.

TC r

227 (m + 2n)nl(n 4+ m)! T

Q3

Kg(m,n) =

(10)

*3

are independent of z and dimensionless. (The z partial deriva-
tives can be written as total derivatives inside the above in-
tegrals. The partial derivative symbol is retained to enhance
readability.)

We use a Taylor series expansion

Fzo +050) = Y 50U (2)mnp(b26)

j=0""

(11)

to determine the integrals in Egs. (7) and (8). Using the notation

F,(n")(z) = 0" F(z), then

zc+bzc =] F(;Zn-f-]_l) N i
/ af”Fm(z)dz:Z m ]('Zc)( )

= j=

Substitute Eq. (12) into Eqs. (7) and (8), then compare with
Eqgs. (1) and (2) to define

> e ORISR (20) (620)

A7 (2¢) = +ZI\'T(771,12)7‘€’Z % s c)(8zc) , (13)
n=0 =1 J:
> ) o= OFHITLG (20 (82¢)?

B} (z¢)= — Z]{,.(m,n) 2 Z = ]E c)(02c) , (14)
n=0 3=1 ’

Ag (z¢) =+ Z Ky(mm,n)rz!

i 03:?+j_]G171(36') (6:C')j

d (15)
n=0 =1 J:
oo oo A2 - ;
” grnti-lp (20) (6z¢)
Bj,(sc) =+ Kolm,n)rg' Y = ](. c)ezel 1)
n=0 =1 ’

which have the dimensions of Webers (tesla-meters?). The su-
perscripts a indicate that the A® and B* terms refer to the ana-
lytic expressions, Egs. (13) to (16). These A and B terms should
agree with those in Egs. {1) and (2) to within the experimental
measurement accuracy. The measured A and B coefficients in
Egs. (1) and (2) are used to determine the F and G functions
in Eqgs. (13) to (16) (see below).

Equations (13) to (16) contain the tull power series expan-
sion in terms of the pickup loop width éz¢. Usually, only the
first order term in §z¢ of the power series expansion is required.

Tables I and I are given to provide some indication as to
how rapidly the power series, in n, in Eqs. (7), (8), and (13) to
{16) converge. We assume, in these tables, that re = dre =1,
and sin(méfc) = 1. (The series will converge more rapidly for
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TABLE I. FUNCTION K,(m,n).

1 n

0 1 2 3 4 5 6
T | 2.0E+00 | -75E-01 | 53602 | -1.5E-03 | 2.4E-05 | -2.5E-07 | 1.76-00
2 | 4.0E+00 | -6.7E-01 | 3.1E-02 | -6.9E-04 | 9.0E-06 | -7.8E-08 | 4.7E-10
3 | 6.0E400 | -6.3E-01 | 2.2E-02 | -3.9E-04 | 4.3E-06 | -3.1E-08 | 1.7E-10
4 | 8.0E400 | -6.0E-01 | 1.7E-02 | -2.5E-04 | 2.3E-06 | -1.5E-08 | 7.2E-11
5 | 1.0E4+01 | -5.8E-01 | 1.3E-02 | -1.7E-04 | 1.4E-06 | -8.1E-09 | 3.5E-11

TABLE II. FUNCTION Ky(m,n).

m n

0 1 2 3 4 5 6
1| 1.0E400 | -4.2E-02 { 1.0E-03 | -1.6E-05 | 1.5E-07 | -1.0E-09 | 5.2E-12
2 | 20E+00 | -8.3E-02 | 1.YE-03 | -2.2E-05 | 1.8E-07 | -L1E-09 | 4.8E-12
3 | 3.0E+400 | -1.1E-01 | 2.0E-03 | -2.2E-05 | 1.6E-07 | -8.4E-10 | 3.4E-12
4 | 40E+00 | -1.3E-01 | 2.1E-03 | -2.0E-05 | 1.3E-07 | -6.2E-10 | 2.2E-12
5 | 5.0E400 { -1.5E-01 | 2.1E-03 | -1.8E-05 | 1.0E-07 | -4.3E-10 | 1.5E-12

re < r4.) Table I tabulates IU.(m,n) and Table II tabulates
Ky(m,n).

Functions F' and G are generally smooth and well behaved
with derivatives that rapidly become small with increasing order.
Tables I and II indicate that the power series expansions (in n)
in Egs. (13) to (16) can be terminated at low values for n.

Fitting Procedure

We use the magnetic field measurements, in the form of
Egs. (1) and (2), and Eqs. (13) to (16) to determine the F,
and G, functions; F}, and GG, can be any function of » that is
nonsingular and satisfies the appropriate boundary conditions.
(In some cases, analytic expressions exist!? for F and G.) A se-
ries expansion using “model” functions can be made for F and
G. Then, Egs. (13) to (16) together with the magnet map will
determine the expausion coefficients. Once F and G are deter-
mined, we have an analytic expression, Eq. {4), for the scalar
potential of a magnetic field that satisfies Maxwell’s equations.

We expand the functions F and G in a series of known
functions (f, ¢g) and write

FHL(Z) = Z am,‘ fj("“; :) [} Gm(z) - Z I’m,f/j(’”; :) N (17)
J J
these functions might depend on the harmonic number m. Funec-
tions f and g are chosen to ensure rapid series convergence in
Eqs. (17) and to minimize the number of = derivative terms re-
quired in Eqs. (13) to (16). Cowbining Eq¢s. (13) to (17) and
fitting (generally using a least-squares minimization method) the
resulting equations to the mapping data, reduced to the form in
Eqgs. (1) and (2), determine the expansion cocfficients a,,; and

mj-
Example

We use a Fourler sine and cosine series for the expansion
functions in Eqgs. (17) and assumne periodic boundary conditions.
Let L be the total length of a mnagnet plus its significant fringe
field region. Equations (17) beconie

Fo(z) =am, + Z [um}. cos(2mjz /L) 4 by, sin(?rrj:/[,)] , (18)

J=1
Gm(z) =co+ Y _ [cm, cos(2mjz/L) + dy, sin(2mjz/L)], (19)

i=1

where —L < =z < L. Substituting Eqs. (18) and (19) into
Eqs. (13) to (16) and keeping only thie first order term in dz¢
gives

395



Proceedings of the 1988 Linear Accelerator Conference, Williamsburg, Virginia, USA

2nire
AL (zo)~an I (m, 0) +ZA m,n 6~CZ 1)n< Wirc

n=0 i=

X [a,nj cos(2mjze /L) + bu; sin(‘ZTrjzc/L)] , (20)
etc. Because of the (2mjrc/L)?" coefficients in Eq. (20), the
higher-frequency Fourier components require more terms in the
series (sum on n) in Eq. (20) than the lower frequency compo-
nents.

Equations (1), (2), (20), etc., determine the expansion co-
efficients (am;, bm;, Cmy s dm; ). One method for obtaining the
expansion coefficients is to use a least-squares minimization tech-
nique. Define

M

Im 2{41,"( C—~1)_ 4rm(&C—21)]

i=1

(21)

etc., where M denotes the number of measurement values. The
function I,, is minimized with respect to the coecfficients (amj,
binjs Cmy > dmy ). The resulting set of linear equations is solved for
the coefficients. Given the expansion coefficients, the magnetic
scalar potential is calculated from Egs. (3), (4), (18), and (19).

Measurement Coil Positioning

Consider the effect on a magnetic field map where the map-
ping cylinder center is offset in a single-harmonic multipole mag-
net. We ignore the fringe-field region and determine the offset
map where the magnetic field is constant in z. Equation (4) in
a uniform-field region with a single multipole can be written as

m
.
V=W (—) cos{mé +6,,) , (22)
Ta

where Vy and 6, are constants. Assume that the center of the
mapping cylinder is displaced by the distance ry and angle 8y
from the magnet center. Then,

(23)
where the subscript C denotes the mapping cylinder coordinates.
Sine and cosince functions are written as exponentials and the
potential function is expanded using the binomial theorem to
obtain the potential function in the offset coordinate system.
From Eq. (22) we obtain

, . m
1‘/7;1 — <’1_a> (‘,0.8(7779 + em)

T=To+7c

n, m—n

Z m. 7 ot mryre
Ixa 77'(771 —n)

7 [r& cos(mbe + 6,,) +

a

-+ T‘C-( mr(;n

Cos[né’u +(m = 1)0¢ + 8.,] (24)

“Uycos{fc + [(m— 1)y + 0]} + const. ] (25)

Equation (24) is the general form of the magnetic scalar poten-
tial for a displaced mapper centroid. Equation (25) lists only
the dipole and m** harmonic terms. The mapper measurement
gives
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V = A, cos(mbc +8,,) + ... + Ay cos{(bc + 61) (26)
where A,, and A; are the m-harmonic and dipole amplitudes,
respectively. Equation (25) shows that the ratio of the dipole to
the 2m-pole harmonic strengths is mr3* ™' /%71 from which we
can calculate rg. The dipole phase angle §; = (m —~1)65 + 6

and, therefore,

A 1/(m—1)
rg = (_—mf; ) rc, (27)
0, — 6,
fo=——". (28)

The above analysis is accurate when there is a single dominant
multipole in a magnet. The effective center (zero dipole mo-
ment) of a compound magnet, containing several different multi-
pole windings (quadrupole + octupole, ete.), will generally move
as the relative multipole excitations change because of centroid
misalignments. Therefore, the separate multipole components
in a compound magnet should be mapped individually.

The analysis indicates that the magnet mapping cylinder
does not have to be precision aligned with the magnet center
axis. The effect of a mapper center-line offset and constant tilt
can be unfolded from the map data.

Further error analysis can be considered once the f and ¢
expansion functions are chosen, the measurement tolcrances are
determined, and the method for fitting the expansion functions
to the data is decided. Beam dynamics requirements will deter-
mine the needed accuracy of the magnetic fields and the error
analysis effort.

Summary

We have analyzed a magnet mapping scheme, suggested by
Halbach®, using a rotatable constant radius cylinder that is cen-
tered and moves on the magnet axis. The magnet map is Fourier
analyzed and presented in Eqs. (1) and (2). Equations (13) to
(16) are fitted to the map data to determine the functions F
and G [in the form of Eqs. {(17)], which, when combined with
Eq. (4), give the magnetic scalar potential. Equation (3) then
gives the magnetic field.

An error analysis was included to determine the effect of an
offset mapper center line from the magnet axis in the nonfringe-
field region of a magnet. A straightforward (though perhaps
tedious) extension of the error analysis can be made in the fringe-
field region.
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