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Abstract general interest to examine beams with distinct tempera-
. L ) , i tures in the two directions.

In certaln_ applications such as heavy ion fusm_m, Inte_nse The purpose of this paper, is to examine thermal equilib-

beams with Iarge_ space charge tune dep_ressmns Will B&m beams in bends with longitudinal temperatures which

transferred from linear transport sections into bent trans;a ot necessarily equal to the transverse temperatures

port sections. In some designs, such as recwcplatmg 'nduﬁind hence the final temperature equilibration has not nec-
tion accelerators, transport through bends will occur Oveerssarily been reached.)

thousands of betatron periods and in some driver designs

the final transport through a bend will occur over tens of 2 THEORETICAL MODEL
betatron periods. Over such distances, non-linear space_ . . o . . ,
charge forces are expected to produce particle phase sp Equm?Fr)lu_m d|str|butl[9n fu?ctlonsf \tNh'Ch _tshatlsfy :hetf
distributions which are close to thermal equilibrium, espe- assov (;)lbssog_ equadl_onsh, or z sysfem \(/jw cons almh 0"
cially with respect to lower order moments. Here we calcuguslﬂg "fin” en |fng ra quS ivg .een ound previously hav-
late the properties of thermal equilibrium beams in bend§9 the foliowing form (refs. [4,5]):

assuming uniform focusing, as a function of two dimen- — t(h —(6/60)2 1
sionless parameters We also outline the calculation of the f = f(h) exp[=(6/00)] @)
change in emittance for a beam that is initially in thermalyherean,, = p? + P2+ K2 (22 + y2) + 290 — 228/ p.
equilibrium in a straight transport section, and that finallyjere f = dN/dzdydp,dp,ds, is the number of particles
reaches thermal equilibrium in a bent system, using an €fer element of phase space, with the in-bend plane (hori-
ergy conservation constraint to connect the two states. - zontal) coordinate, and vertical coordinatg, dimension-

1 INTRODUCTION less momenta,_, normalized to the design momentum in
in the longitudinal directionPy, = ~omuvg. The quantity
The conditions for equilibria of beams in a bent sysé = (Ps — Fy)/ P, is the fractional deviation of a parti-
tem were determined in ref. [1], under the assumptionle with longitudinal momentun®; from the longitudinal
of uniform focusing and bending, with dispersion includediesign momentum, anak is the particle rest mass. The
through linear order in the equations of motion. The equiguantity ko is the zero current spatial betatron frequency
libria were determined by requiring that the derivatives ofn the postulated uniform focusing channel, anid the ra-
the second order moments with respect to path length vagius of curvature in the uniform bending field. The quantity
ish. A further assumption of this calculation was that spacg is the electrostatic potential, apd= ¢/~vgmvg.
charge was distributed uniformly in an elliptical cross sec- In this paper, we focus on the distribution of the form:
tion, although as pointed out in refs. [2,3], distributions o
that are functions only af?/(z?) + y?/(y?) are also ex- [ (2,Y,Pz,py,0) = foexp(—hy/T1) exp(=6°/55) (2)
act solutions to the moment equations of ref. [1], where _ . i ,
z is the coordinate in the bend plangis the out-of-plane Her&.LL = k71 /7gmvy whereTy is the comoving beam
coordinate, and ) indicates average over the distribution. transverse temperaturé, is Boltzmann's constant. The

Recently, in refs. [4,5] equilibrium distributions havedensnyn(w’y) is given by:

been calculated that are fully self-consistent solutions to the 0 oo oo
coupled Vlassov and Poisson equations. Distribution funex(z,y) = / / / f(x,y, Dz, Dy, 0)dpzdp,dd  (3)
tions which are functions only of the single particle trans- —00 J—o0 J—0o0
verse hamiltoniath | are solutions of the Vlasov equation,
sinceh, is a constant of the motion. In refs. [4,5], the _
properties of a generalized KV distribution, (i.e. a delta-
function of h ) were investigated in detail. Although,
the KV beam in bends is interesting because of its ania—ieren = 03 /2k%,p*T 1, and represents the effects of dis-
lytic tractability, beams which have equilibrated (e.g.dueto = =/ = B . _

. . : ersion in a bend on off-momentum particles, akd =
space charge non-linearities), are likely to be better chalr-

: L . o(x,y) — ¢(0,0). We find solutions to the non-linear pois-
acterized by thermal equilibrium distributions. Although on's equatio2¢ — —qn(z,y, é(z, y)) /e for which the

longitudinal/transverse coupling can be strong [6], it is Ogeam pipe (radius,) is sufficiently far from the beam edge

uch that image forces can be ignored.

_1 k2 ) .
n(0,0) exp T—j %([l —na® +y*) + gA¢(z, y)> (4)

* Work performed under the auspices of the U.S. D.O.E. by LLNLS
under contract W-7405-ENG-48.

127



3 DIMENSIONLESS FORM OF MODEL

Without dispersion/f = 0) the beam density profiles in
this problem recover azimuthal symmetry. In that case, the
density profiles can be characterized by a single parameter
(see e.g. [8]) which we define hereas = n(0,0)/no14- 075
Heren(0,0) is the central density and..;4 is given by: '0 5
Neold = 273mv§eokgo/q2. The quantityn.qq is the den- 555 il
sity of a beam with focusing constakyg,, but at zerdl,
and zera;.

When dispersion is added, the second dimensionless pa-
rametern appears and all solutions may be characterized
by the two dimensionless parameters andn. We de- \
fine X = kﬁow/Ti/Q, Y = k,aoy/Ti/?, ® = g¢/T,,and Figure 1. Scaled density.(X,Y)/ncq vs. X andY” for
A® = ®(X,Y) — ®(0,0). We may then cast Poisson'sthe parameters, = 0.974, andyn = 0.05.
equation into the dimensionless form: -

2P 2P 2.25

% + % = —2agexp - V. (5) )

Here,¥ = (1—7)X2/24+Y?/2+ A®. The boundary con- 175

ditionis® = 0atX>+Y? = R2, whereR,, = kgor, /T’ 15

is the dimensionless pipe radius. Note that we have ne- 125

glected the curvature terms in Poisson’s equation, which is 1
appropriate when, << p. Note also thak, adds a third

-4 2 -1 0

dimensionless parameter to the problem, but results pre-
sented here will be in a regime whel, is large enough
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so that the beam parameters are nearly independéty.of 1.4
We solve this equation numerically, using standard SOR 1,
techniques. 1
Once a solution is obtained, it is useful to calcu- &
late dimensionless moments of the density distribution: 3 08
Ii(ag,n) = [ [dXdY exp —¥; 506
Ix2(ag,n) = [ [dXdY X? exp—¥; — 04
Iy2(ag,n) = [ [dXdY Y? exp —T; 0.2
andIg(ao,n, Ry) = [ [dXdY ® exp—T. Here,the in- 0
tegration occurs over the interior of the beam pif&, + -5 -4 -3 -2 -1 0
Y? < R, and the explicit dependence ag andy is dis- Log[1-alpha_0]
played. From these quantities, averages can be obtain&dgure 2. log(I1) vs.log(1 — ag) (upper) andog(X?) vs.
(X2 = Ix2 /11, (Y?) = Iy2 /11, and(®) = 15/ I;. log(1 — ag) (lower) for five different values of (starting

Using these integrals and averages, which depend orflpm the left-most curve and proceeding to the right=
on ag 1, (and in the case of, R,), we may cal- 0.00,0.01,0.02,0.03, and 0.04).
culate physical parameters of the beam. For example, The curves asymptote t&y = 1 — n/2 for large space
the currentl = qvoncozdaoTLh/kéo, the perveance charge depressions (derivable from the envelope equations
K = qI)2neqydmvd = aoT I /7, x-emittancee, = below with zero emittance), anfl tends to2x//1 — 7,
4((z2)(p2) — (xpe)?)'/? = 4T (Ix=/1;)'/?, and space while (X?) tends tol/(1 — n) in the limit of zero space
charge parametef = 4K (2%)/e2 = K /4T, = aol, /4x.  charge.

The rms tune dGDI'ESSiCM}/O'O = (1/<X2> + 77)1/2, and 5 EQUILIBRIUM EQUATIONS

oy /0 = 1/ (Y2112,
In ref. [1], moment equations including dispersion were
4 RESULTS derived, and in ref. [9], the effects of images on a uni-
Figure 1 disp|ays a surface p|ot of the normalized beamrm denSity elllptlcal beamin acircular plpe were derived.
density with a relatively large dispersion, and moderatéhe envelope equations with these two effects included (in
tune depression. The beam has an apparent elliptical shasilition to the usual external focusing, space charge and
with a flattop similar to the thermal equilibrium beams inemittance terms are):
straight transport sections (cf. [8]). d%a

ds?

2 4 2K (a® —b)a
= —k2a+ = 4 (o K 6
ﬁw+a3+p®>+a+b+ e (6)
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d?b 9 e 2K (a® — b?)b this algorithm agrees within numerical accuracy to the cal-

el ) —
ds? K3ob + b? + a+b K 4r} (7) culation done using the moment equations in ref. [1] and
compared with simulations in ref. [7].
Here « = 24/(z?) and b = 2./(y?). Setting
d?a/ds* = d?b/ds*> = 0, and transforming to the 7 CONCLUSIONS
dimensionless variables, we find the equilibrium moments \\e have solved the self-consistent Vlasov Poisson sys-
satisfy: , X ] tem for beams in bends with thermal distributions, and
=—(1- X 2071 i i i itudi-
0=—(1-n)V({X?)+ 7ot o (VX4 /0) with temperatures not necessarily equal in the longitudi
aoli ((X2)—(v?)) nal and transverse directions. We have characterized these
— =Rz beams by two dimensionless parameteysndn and have
) " graphed two of the quantities which characterize the solu-
0=—-(Y?)+ Tom T zﬂ(\/ﬁi\/w%) tions. We find that such beams have profiles which are con-
a0l ((X?)—(v?)) stant on nested ellipses, to within numerical errors when
~— 7RT the beam pipe is sufficiently large. This validates mo-

It has been found that in all cases examined, that givenent and envelope equations in refs. [1] and [3] for this
I, and solving for(X?) and (Y'?), these equilibrium class of beams. Emittance growth from bend/straight tran-
equations accurately predict the moments derived from tlsitions, using energy and current conservation constraints
SOR code, and the final term accurately gives an indicatiomas found to be the same as that calculated in ref. [1] again
of the importance of image charge effects on the solutionto within numerical uncertainties.
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