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Abstract

In certain applications such as heavy ion fusion, intense
beams with large space charge tune depressions will be
transferred from linear transport sections into bent trans-
port sections. In some designs, such as recirculating induc-
tion accelerators, transport through bends will occur over
thousands of betatron periods and in some driver designs
the final transport through a bend will occur over tens of
betatron periods. Over such distances, non-linear space
charge forces are expected to produce particle phase space
distributions which are close to thermal equilibrium, espe-
cially with respect to lower order moments. Here we calcu-
late the properties of thermal equilibrium beams in bends
assuming uniform focusing, as a function of two dimen-
sionless parameters We also outline the calculation of the
change in emittance for a beam that is initially in thermal
equilibrium in a straight transport section, and that finally
reaches thermal equilibrium in a bent system, using an en-
ergy conservation constraint to connect the two states.

1  INTRODUCTION

The conditions for equilibria of beams in a bent sys-
tem were determined in ref. [1], under the assumption
of uniform focusing and bending, with dispersion included
through linear order in the equations of motion. The equi-
libria were determined by requiring that the derivatives of
the second order moments with respect to path length van-
ish. A further assumption of this calculation was that space
charge was distributed uniformly in an elliptical cross sec-
tion, although as pointed out in refs. [2,3], distributions
that are functions only ofx2=hx2i + y2=hy2i are also ex-
act solutions to the moment equations of ref. [1], where
x is the coordinate in the bend plane,y is the out-of-plane
coordinate, andh i indicates average over the distribution.

Recently, in refs. [4,5] equilibrium distributions have
been calculated that are fully self-consistent solutions to the
coupled Vlassov and Poisson equations. Distribution func-
tions which are functions only of the single particle trans-
verse hamiltonianh

?
are solutions of the Vlasov equation,

sinceh
?

is a constant of the motion. In refs. [4,5], the
properties of a generalized KV distribution, (i.e. a delta-
function of h

?
) were investigated in detail. Although,

the KV beam in bends is interesting because of its ana-
lytic tractability, beams which have equilibrated (e.g.due to
space charge non-linearities), are likely to be better char-
acterized by thermal equilibrium distributions. Although
longitudinal/transverse coupling can be strong [6], it is of
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general interest to examine beams with distinct tempera-
tures in the two directions.

The purpose of this paper, is to examine thermal equilib-
rium beams in bends with longitudinal temperatures which
are not necessarily equal to the transverse temperatures
(and hence the final temperature equilibration has not nec-
essarily been reached.)

2  THEORETICAL MODEL

Equilibrium distribution functionsf which satisfy the
Vlassov/Poisson equations, for a system with constant fo-
cusing and bending radius have been found previously hav-
ing the following form (refs. [4,5]):

f = f(h
?
) exp[�(�=�0)

2] (1)

where2h
?

= p2x + p2y + k2�0(x
2 + y2) + 2g� � 2x�=�.

Heref � dN=dxdydpxdpyd�, is the number of particles
per element of phase space, with the in-bend plane (hori-
zontal) coordinatex, and vertical coordinatey, dimension-
less momentapx;y normalized to the design momentum in
in the longitudinal directionP0 � 
0mv0. The quantity
� = (Ps � P0)=P0, is the fractional deviation of a parti-
cle with longitudinal momentumPs from the longitudinal
design momentum, andm is the particle rest mass. The
quantityk�0 is the zero current spatial betatron frequency
in the postulated uniform focusing channel, and� is the ra-
dius of curvature in the uniform bending field. The quantity
� is the electrostatic potential, andg � q=
3

0
mv2

0
.

In this paper, we focus on the distribution of the form:

f(x; y; px; py; �) = f0 exp(�h?=T?) exp(��
2=�2

0
) (2)

Here,T
?
� kbT?=


2

0
mv2

0
whereT

?
is the comoving beam

transverse temperature,kb is Boltzmann’s constant. The
densityn(x; y) is given by:

n(x; y) =

Z
1

�1

Z
1

�1

Z
1

�1

f(x; y; px; py; �)dpxdpyd� (3)

= n(0; 0) exp
�1

T
?

k2�0

2
([1� �]x2+ y2) + g��(x; y)

!
:(4)

Here� � �2
0
=2k2�0�

2T
?

, and represents the effects of dis-
persion in a bend on off-momentum particles, and�� �

�(x; y)� �(0; 0). We find solutions to the non-linear pois-
son’s equationr2� = �qn(x; y; �(x; y))=�0 for which the
beam pipe (radiusrp) is sufficiently far from the beam edge
such that image forces can be ignored.
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3  DIMENSIONLESS FORM OF MODEL

Without dispersion (� = 0) the beam density profiles in
this problem recover azimuthal symmetry. In that case, the
density profiles can be characterized by a single parameter
(see e.g. [8]) which we define here as�0 � n(0; 0)=ncold.
Heren(0; 0) is the central density andncold is given by:
ncold � 2
3mv2

0
�0k

2

�0=q
2: The quantityncold is the den-

sity of a beam with focusing constantk�0, but at zeroTp
and zero�.

When dispersion is added, the second dimensionless pa-
rameter� appears and all solutions may be characterized
by the two dimensionless parameters�0 and �. We de-
fineX � k�0x=T

1=2
?

, Y � k�0y=T
1=2
?

, � � g�=T?, and
�� � �(X;Y ) � �(0; 0). We may then cast Poisson’s
equation into the dimensionless form:

@2�

@2X2
+

@2�

@2X2
= �2�0 exp�	: (5)

Here,	 � (1��)X2=2+Y 2=2+��. The boundary con-
dition is� = 0 atX2+Y 2 = R2

p, whereRp � k�0rp=T
1=2
?

is the dimensionless pipe radius. Note that we have ne-
glected the curvature terms in Poisson’s equation, which is
appropriate whenrp << �. Note also thatRp adds a third
dimensionless parameter to the problem, but results pre-
sented here will be in a regime whereRp is large enough
so that the beam parameters are nearly independent ofRp.
We solve this equation numerically, using standard SOR
techniques.

Once a solution is obtained, it is useful to calcu-
late dimensionless moments of the density distribution:
I1(�0; �) �

R R
dXdY exp�	;

IX2(�0; �) �
R R

dXdY X2 exp�	;
IY 2(�0; �) �

R R
dXdY Y 2 exp�	;

andI�(�0; �; Rp) �
R R

dXdY � exp�	. Here,the in-
tegration occurs over the interior of the beam pipe,X2 +
Y 2 < R2

p, and the explicit dependence on�0 and� is dis-
played. From these quantities, averages can be obtained:
hX2i � IX2=I1, hY 2i � IY 2=I1, andh�i � I�=I1.

Using these integrals and averages, which depend only
on �0 �, (and in the case ofI�; Rp); we may cal-
culate physical parameters of the beam. For example,
the currentI = qv0ncold�0T?I1=k

2

�0, the perveance
K � qI=2��0


3
0mv30 = �0T?I1=�, x-emittance�x =

4(hx2ihp2xi � hxpxi2)1=2 = 4T?(IX2=I1)
1=2, and space

charge parameterS = 4Khx2i=�2x = K=4T? = �0I1=4�.
The rms tune depression�x=�0 = (1=hX2i + �)1=2, and
�y=�0 = 1=hY 2i1=2.

4  RESULTS

Figure 1 displays a surface plot of the normalized beam
density with a relatively large dispersion, and moderate
tune depression. The beam has an apparent elliptical shape
with a flattop similar to the thermal equilibrium beams in
straight transport sections (cf. [8]).
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Figure 1. Scaled densityn(X;Y )=ncold vs. X andY for
the parameters�0 = 0:974, and� = 0:05.
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Figure 2. log(I1) vs. log(1��0) (upper) andloghX2i vs.
log(1 � �0) (lower) for five different values of� (starting
from the left-most curve and proceeding to the right,� =
0.00, 0.01, 0.02, 0.03, and 0.04).

The curves asymptote to�0 = 1 � �=2 for large space
charge depressions (derivable from the envelope equations
below with zero emittance), andI1 tends to2�=

p
1� �,

while hX2i tends to1=(1 � �) in the limit of zero space
charge.

5  EQUILIBRIUM EQUATIONS

In ref. [1], moment equations including dispersion were
derived, and in ref. [9], the effects of images on a uni-
form density elliptical beam in a circular pipe were derived.
The envelope equations with these two effects included (in
addition to the usual external focusing, space charge and
emittance terms are):

d2a

ds2
= �k2�0a+

�2x
a3

+
4

�
hx�i+ 2K

a+ b
+K

(a2 � b2)a

4r4p
(6)
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d2b

ds2
= �k2�0b+

�2y

b3
+

2K

a+ b
�K

(a2 � b2)b

4r4p
(7)

Here a � 2
p
hx2i and b � 2

p
hy2i. Setting

d2a=ds2 = d2b=ds2 = 0, and transforming to the
dimensionless variables, we find the equilibrium moments
satisfy:
0 = �(1� �)

p
hX2i+ 1p

hX2i
+ �0I1

2�
�p

hX2i+
p
hY 2i

�

+
�0I1(hX2i�hY 2i)

�R4
p

0 = �
p
hY 2i+ 1p

hY 2i
+ �0I1

2�
�p

hX2i+
p
hY 2i

�

��0I1(hX2i�hY 2i)
�R4

p

It has been found that in all cases examined, that given
I1, and solving forhX2i and hY 2i, these equilibrium
equations accurately predict the moments derived from the
SOR code, and the final term accurately gives an indication
of the importance of image charge effects on the solution.

6  EMITTANCE GROWTH FROM
BEND/STRAIGHT TRANSITIONS

As discussed in [1], if a beam abruptly enters a bend
from a straight transport section, off momentum particles
will tend to oscillate inx about centers which are displaced
from the design orbit of the machine. This causes an en-
velope mismatch, and if the non-linear space charge forces
are sufficiently strong to allow phase mixing and energy
equi-partition between thex andy directions, then a new
equilibrium will result. In ref. [1], the moment equations
yield an exact energy invariant, whenk�0 is independent of
s, under the assumption that density is constant on nested
ellipses (n(x; y) = n(x2=hx2i + y2=hy2i)). More gen-
erally, a dimensionless average transverse energy may be
written:

H? =
1

2

�
(1� 2�)hX2i+ hY 2i+ h�i+ 2

�
(8)

Because of the choice of normalization, it is the quantity
H?T? which is conserved. Note that the factor of 1/2
multiplying h�i is necessary to correctly calculate the self-
assembly energy from space charge. To calculate the the
change in beam parameters from a straight/bend transition,
we first calculate the currentI and the transverse energy
H?T? of the beam in the straight section. Because we tab-
ulateH?(�0; �; Rp) for fixedRp we must account for the
change inRp asT? changes even thoughrp remains fixed.
ButH?(�0f ; �f ; Rpf ) =H?(�0f ; �f ; Rpi)+(K=2T?f)�
(lnRpf � lnRpi), where subscriptsi; f indicate initial, fi-
nal. Fork�0 andrp held constant, we find
T?i[H?(�0i; � = 0; Rpi) + (K=4T?i) lnK=T?i] =

T?f [H?(�0f ; �f ; Rpi) + (K=4T?f ) lnK=T?f ]. For a fi-
nite value of�, we iterateT? and�0, until the current
and this relation forH? is satisfied. This allows cal-
culation of all final beam parameters and usingh�2i =

(1 + �hX2i)�20=2, we may a posteriori, determine the ini-
tial value of�0. The change in emittance calculated using

this algorithm agrees within numerical accuracy to the cal-
culation done using the moment equations in ref. [1] and
compared with simulations in ref. [7].

7  CONCLUSIONS
We have solved the self-consistent Vlasov Poisson sys-

tem for beams in bends with thermal distributions, and
with temperatures not necessarily equal in the longitudi-
nal and transverse directions. We have characterized these
beams by two dimensionless parameters�0 and� and have
graphed two of the quantities which characterize the solu-
tions. We find that such beams have profiles which are con-
stant on nested ellipses, to within numerical errors when
the beam pipe is sufficiently large. This validates mo-
ment and envelope equations in refs. [1] and [3] for this
class of beams. Emittance growth from bend/straight tran-
sitions, using energy and current conservation constraints
was found to be the same as that calculated in ref. [1] again
to within numerical uncertainties.
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