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Abstract

PISCES II calculates Eigensolutions of any axi-
symmetric cavity with 2.5D Finite Element Method and
can handle periodic boundary conditions. Dipole and
higher multipole solutions are obtained by hybrid finite
elements. The accuracy of the frequency in a solution
obtained from PISCES II is improved by use of higher
order elements. In order to reduce the computation time,
the Eigenvalue solver is improved.

1  INTRODUCTION
An RF cavity code with high accuracy is necessary for

design with high precision. There are still some needs of
an axisymmetric cavity because of its simplicity.

PISCES II can calculate all Eigensolutions in a cavity
with axisymmetric boundaries including multipole
modes[1,2]. Periodic boundary conditions can also be
handled in this code.

2  FORMULATION AND FINITE
ELEMENT MODEL

Because either 
r
E  or 

r
H  can be used as the field

variable, only the electric field will be shown here. The
differential equations to be solved are [3,4,5],

∇ × ∇ ×
r
E + k2

r
E =

r
0 , ∇⋅

r
E =

r
0 (in Ω) , (1)

where k2=ω2εµ. In vacuum space k2=ω2/c2, where c is
the speed of light. Boundary conditions are
r
E ⋅

r
n = 0       on magnetic boundaries (Γm) (2)

r
E ×

r
n =

r
0     on electric boundaries (Γe) and (3)

r
Eright =eiϕ r

Eleft    on periodic ones (Γp), (4)

where 
r
n  denotes the outward normal on the boundary, and

ϕ is the phase advance in the problem .
Because only the problems on axisymmetric domains

are considered, we can assume si n mθ and cos mθ
dependencies for Er, Ez and Eθ components, and then the
problem can be reduced to two-dimensional problem:
r
E  = (Eθ sin mθ, Er cos mθ, Ez cos mθ). (5)

Then (Eθ, Er, Ez) are functions of r and z only. The field
variables are (rEθ, Er, Ez) for m≥1 and (Eθ , H θ) for
m=0.

Using Finite Element Method, Eqs. (1-3) can be reduced
to a matrix form of a general Eigenvalue equation:
M ⋅

r
x =k2 K ⋅

r
x , (6)

where M  and K are large sparse symmetric matrices,
and 

r
x  is an Eigenvector[6]. Because of the hybrid

elements, any spurious mode has zero-Eigenvalue and is
well separated from the real modes. Usually several
Eigensolutions starting from the smallest one but zero are
of interest. Unfortunately, this Eigenvalue problem has
many zero-Eigenvalue solutions, which correspond to the
spurious modes, and thus special care should be taken.
For axisymmetric solutions, such as TM0xx or TE0xx,
the problem can be expressed by field variable of Eθ  or
Hθ , which has no zero Eigensolution.

3  PERIODIC BOUNDARY
The periodic boundary condition is implemented using

Floquet's theorem[7]. Although 
r
x  has to be a complex

vector for this analysis, the final Eigenvalue problem to
be solved can be rewritten as real and symmetric by
splitting the component into real and imaginary part.
Because of this technique, the Eigenvalue solver for the
usual boundary conditions is used.

4  GENERAL EIGENVALUE SOLVER
Because Eq. (5) is a general Eigenvalue problem for

large sparse symmetric matrix with many zero Eigenvalue
solutions, special care had to be taken. The solver is based
on the subspace method[8] and uses zero and upper
filtering technique[9].

The zero filtering technique requires a rough estimate of
the lowest Eigenfrequency(FLO), which can be obtained
by the physical dimension of the problem. If FLO is not
given by a user and solution with the second order
element or multiple solutions are required, PISCES II
evaluates FLO from a single mode solution with lowest
order element starting with the "guess" value from the
physical dimension.

Using similar technique, upper filter is also applied for
acceleration of the convergence. If the upper frequency
(FUP) are not given by a user, PISCES II uses the
highest Eigenvalue in the subspace after it settled. In this
case the FUP value is adjusted adaptively.

Because the method is based on the iterative method,
initial vectors should be given at the beginning. For the
problem with the lowest order element, the initial vectors
are given by random numbers. Before starting with the
second order element, the solution vectors are obtained
from the lowest order element and "prolonged" to the
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Fig. 1 Mesh example for a sphere.
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Fig. 2 Mesh data for a sphere with radius of 10 cm.

Table 1: The encoding of the boundary conditions
Code Boundary condition
'A' on axis ( r=0 )
'E'' on electric boundary (metal surface)
'M' on magnetic boundary (symmetry plane)
'P' left side boundary for periodic boundary
'Q' right side boundary for periodic boundary

second order solutions by linear interpolation. Because
fairly good initial solutions are obtained by this way and
FUP is also available from the beginning, the solution
time is reduced up to half comparing with direct start with
the random vectors.

5  INPUTS TO PISCES II
A mesh data example for a sphere as shown in Fig. 1 is

listed in Fig. 2. All the internal units are in SI. The first
line contains a title with less than 80 characters. The
second line is problem constants, where only the unit
scale for cm is specified in the list. The options are
explained later. The third line has three numbers, which
are the number of nodes, the number of elements and the
number of boundary points plus one for closure of the
line. Node coordinates are specified being enclosed by
brackets. Followings are the element data, which specifies
the three coordinates of the vertices by the sequential
numbers of the coordinate sets. The fourth positions are
reserved. Then the boundary points are specified in the
same way as above. Each boundary condition for a
segment between n and n+1 boundary points is specified
by a character constant. The encoding of the boundary

conditions are listed in Table 1. The last group is the
curvature data which specifies the radii of the segments in
the same sequence as the boundary conditions. Zero in
radius should read as straight line. Each group is read by
free format read statement. The mid-line points will be
generated in the code if the second order elements are
needed. For a periodic boundary problem, the radial
coordinates of both the left and right side nodes should
coincide.

MESHNET program[10] can convert a TAPE35 data
that is generated by LATTICE[11] to an input file for
PISCES II. Because the curvature information is not
included in TAPE35 data, the curvature data has to be
added by hand or by NETREF (NET REFine) program.

Table 2 explains the major problem constants and their
default values. Table 3 shows the encoding of the element
type. For example, LMTYP=22, the second order nodal
elements are used for axisymmetric modes (m=0) while
the mixed linear edge/nodal element are used for multipole
modes (m>0). For the default setting of LTYP=1, both
TE0xx and TM0xx are obtained simultaneously at m=0 so
that any mode is not missed in the solution. Although
such Eigenvalue problem can be separated into two
independent problems, it is solved altogether.

Table 2: The problem constants
name Default description
OPTNF T The problem constants will be read

again
EM 1.0 m in Eq. (5)
MSTEP 1 increment of m
MNUM 1 iterations
PHASE 0.0 phase advance
PHSTEP 0.0 increment of phase
NUMPH 1 iterations
BCLR '' override boundary condition at

left/right sides(2chars)
UNIT 1 . unit scale
CVF T enable curved boundary
FIELD 'E' field variable E or H
LMTYP 1 element mode
NMODE 5 modes to be solved
FUP 0.0 highest frequency
FLO 0.0 lowest frequency
EPS 1E-5 accuracy
ITMX 200 iterations for subspace
MGF T enable two step solve
MCG 2 method of CGM
INFILE '' file for initial value
OTFILE '' output file

Table 3: The element mode encoding
LMTYP 0 1 2 10 11 12 20 21 22
LTYP (EM=0) 0 1 2 3 1 2 4 1 2
LTYP (EM>0) I 0 0 0 3 3 3 4 4

LTYP=0  E/H with mixed constant edge/nodal element
LTYP=1  E&H with linear nodal element
LTYP=2  E/H with 2nd order nodal
LTYP=3  E/H with mixed linear edge/nodal element 12 params
LTYP=4  E/H with mixed linear edge/nodal element 14 params
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6  EXAMPLE
Figs. 5 and 6 show the relative frequency errors and

CPU time as functions of the number of unknowns for
the hemisphere problem shown in Fig.1 (r=10cm). The
CPU time depends on only the number of unknowns,
although the number of nonzero elements in the matrices
are about twice. The second order solutions give better
accuracy with doubled memory requirement.
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Fig. 5 Relative frequency errors of the second and the
third lowest modes in a spherical cavity as a function of
the number of unknowns.
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Fig. 6 CPU times as functions of the number of
unknowns.

7  CONCLUDING REMARKS
After the improvement of initial vectors and parameters,

the dipole problem with 324388 unknowns—23572

nodes, 46519 elements, 624 boundary points, 93662
point (including mid-line points generated internally)—
takes about 20 hours for seven Eigensolutions. If FLO
and FUP are given, the CPU time is reduced to about
70%. The most time consuming portion is the linear
matrix solver. PCGM (Preconditioned Conjugate Gradient
Method) with SOR as a preconditioner is currently used
for the linear matrix solver. More efficient preconditioner
will reduce the CPU time.
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