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Abstract

The numerical calculation of eigenvalues in structures con-
taining high loss dielectric and permeable materials is of
importance in the field of accelerators as well as in many
other high frequency applications. While satisfying algo-
rithms exist for loss free and small-loss problems, the nu-
merical problem of highly lossy material insertion is still
a big challenge. We examine the Jacobi-Davidson method
that proves to be a rather suitable method for calculating a
set of eigenvalues even in the case of highly absorbing ma-
terials. Furthermore, unlike the commonly used sub-space
methods, this algorithm is not limited to calculate extreme
eigenvalues only. It is also capable of finding the eigenfre-
quencies located around any user specified frequency. An-
other practical advantage of this method is the absence of
parameters such as the upper limit for an eigenvalue spec-
trum.

1 INTRODUCTION

Many problems in the field of electroctromagnetic design
require the determination of a set of eigenvalues and cor-
responding eigenvectors. In the absence of lossy dielectric
and permeable material or even for small loss problems, ex-
isting algorithms are functioning satisfyingly. In the pres-
ence of highly lossy material new methods like the Jacobi-
Davidson technique as shown in [1] must be used. This al-
gorithm has been implemented in the eigenvalue module of
the electromagnetic CAD software MAFIA which is based
on the FI-Technique. Besides the basic theory we present
results for typical accelerator components such as the pre-
liminary model of a high order mode damped accelerating
cavity built at Fermilab.

2 BASIC CONCEPTS

2.1 The FIT-Method

The formulations of the Finite Integration Technique (FIT)
according to Weiland [2] provides a general spatial dis-
cretization scheme usable for different electromagnetic ap-
plications of arbitrary geometry. The so called Maxwell
Grid Equations and the material relations are given in the
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following notation:
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The geometry is discretized on a dual orthogonal grid sys-
tem with the vectors of the electrical grid voltage�e and the

magnetic flux��b located on the normal GridG while the

vectors of the electrical flux��d and the magnetic grid volt-
age�h are based on the dual GrideG. The analytical curl
operator results in the curl matrices (C, eC) and the diver-
gence operator in the source matrices (S,eS).
The presence of lossy dielectric and permeable materials
can be included by introducing complex diagonal material

matrices��D
"

and�D
�
. The eigenvalue equation can be ob-

tained by combining equations 1 and 2 in the frequency
domain with the now complex grid voltages�e;�h:
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2.2 The Jacobi-Davidson Method

The Jacobi-Davidson method as described in [3] is applica-
ble to the standard as well as to the generalized eigenvalue
problem with a complex system matrix. Here, we will only
concentrate on the standard eigenvalue problem as it arises
when using the FIT as presented above.
The idea of Jacobi-Davidson techniques is to generate a
search subspace on which the projected eigenvalue prob-
lem of a now much smaller dimension is solved. This
is the “Davidson“ part and leads to an approximation for
the eigenvalue and eigenvector of the unprojected problem.
In the Jaccobi part of the algorithm, a correction equation
is solved defining an orthogonal correction for the current
eigenvector approximation. This correction is also used to
expand the orthogonal search subspace.
Although no estimations of extreme eigenvalues are
needed, there is a practical problem with the Jacobi-
Davidson algorithm, namely the convergence towards a
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specific eigenvalue. Usually one is interested in calculat-
ing a set of eigenvalues located around a user specified
target which is more effectively done by using a modified
method, the JDQR algorithm, as described in [4]. Here
the Jacobi-Davidson method is used to generate a partial
Schur-form for the standard eigenvalue problem. A explicit
deflation technique is introduced which leads to a modified
correction equation. After identifying the first eigenvalue,
the speed of convergence towards the succeeding ones is
increased by reusing already generated subspace informa-
tion.

3 NUMERICAL RESULTS

The JDQR-algorithm, a modified version of the Jacob-
Davidson method, has been implemented for rz-problems
in the eigenvalue module of the electromagnetic CAD
software MAFIA. As an example the preliminary design
of a high order mode damped cavity developed at Fermilab
[5] has been chosen. The damping of the unwanted higher
modes excited by the beam itself is achieved by inserting
rings of lossy dielectric and permeable material with
" = 5� 5i and� = 100� 3i. The geometry of the cavity
is shown in figure 1.
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Figure 1: High order mode damped accelerating cavity

The first ten eigenmodes and the corresponding quality fac-
tors have been calculated , the results are summarized in
table 1. To ensure that the lowest ten modes are identified,
the user given eigenvalue target has been set to zero.
The speed of convergence for each eigenmode is depicted

Mode fre=MHz fim=MHz Q

1 54.608 0.657 41.56
2 63.723 15.888 2.01
3 64.833 16.357 1.98
4 87.578 1.902 23.02
5 98.203 36.505 1.35
6 98.278 36.606 1.34
7 137.547 53.701 1.28
8 137.630 53.829 1.28
9 171.255 52.872 1.62
10 171.340 53.066 1.61

Table 1: First ten Eigenmodes of a high order mode
damped cavity

in figure 2. Usually, the identification of the first eigen-
frequency takes more iteration then for the higher modes.
This is due to the fact that subspace information generated
for the first eigenvalue can be used to speed up the conver-
gence of the following ones.

Figure 2: Relative error of eigenvalues vs. number of iter-
ations

4 CONCLUSION

The Jacobi-Davidson method has proved to be a success-
ful approach to the identification of resonating modes in
structures containing highly absorbing materials. The al-
gorithm is also capable of finding the eigenfrequencies lo-
cated around an user given frequency which is useful for
the examination of special frequency ranges. Another prac-
tical advantage of this method is the absence of parameters
such as the upper limit for an eigenvalue spectrum.
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