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Abstract

Advanced radiographic systems for  stockpile
stewardship require very small x-ray sources to achieve the "beer can"
required resolution. Focusing multi-kiloampere beams to
diameters ornthe order of 1 mmonto aBremsstrahlung
target leads to the generation of axial electric fields on the
order ofseveralMV/cm which act to extracions out of eam
the surfaceplasmaand acceleratthem upstream into the
beam. These backstreamiigns act as adistributed X-ray target
electrostatic lens which can perturb the focus of the
electron beam in a time varying manner dutiihg pulse.
An analytic model of the ion extraction pgesentedor a

particular target geometry along with scaling laws for the. . .
perturbation of the focal spot. ig. 1. "Beer can" geometry proposed to reduce the space

charge depressed potential of the beam which
1 INTRODUCTION would reduce the backstreaming ion current.

We will assume that the targstirface issufficiently
rich in ions that flow will bespace chargbmited. The
teady statemission isdetermined byPoisson'sequation
Qr the electrostatic potential (in c.g.s. units)

High resolution x-ray radiography requires the
production of asmall €1 mm diameter)spot on the
surface of a Bremsstrahlung converter target by
relativistic electron beam of at least several kiloamper
[1]. A mechanism that might possibly disrupt tfoeal )
spot was proposed by D. Welch [2Bombardment of the 0°® =-4mp (1)
target by a high power electron beam wolddd to the
rapid formation of a surface plasma. A large aglattric wherep is the sum of the beanthargedensity and the
field would appear atthe surface due to the charge density of the emitted ions. Since the target (anduhe)
redistribution on the target arising from cancellation of there assumed to lgrounded, wamay use theonservation
beam'sradial electric field. This axial field would expel of energy to obtain the ion velocity as
the ions into the beamThesebackstreamingons would
acquire energies on tteeder ofthe space chargdepressed vV =\-2ed/M )
potential of the beanandwould propagate upstream at _ o ) ) )
very high speeds wherthey would act as an electrostaticwhere M is the ion mass and e is the ion charge. The ion
focusing lens. The focusindue to these moving ions charge density is given by
would causdhe electron beam to pinch upstream of the
target and then rapidly diverge. The result would bpat p =3(r)/v 3)
size thatwould rapidly increase iime at theconverter '
target.

An analytic model ispresentedfor a "beer can"
geometry in which a close fitting conducting tub
surroundsthe beam right up to the target. Beam
envelope equation isised to derivescaling laws for the _
effect ofthe backstreaming ions on tfecal spot size at P = —pOJO(ar) 4)
the target.

where J(r) is the ion current density.

Equation [1] is two dimensional @ndz). A great
simplification is made possible by choosing thbeam
%rofile to be of the form

where ¢ is the zeroth order Bessel function and
2 TARGET GEOMETRY AND MODEL a =Xy, / a. Here a is theadius ofthe beercan, Xy, is

_ . thefirst root of g and pg is the on-axishargedensity of
We will model the "beer can"geometry shown in the beam

Figure 1. In thistarget arrangement, a conducting tube ™) o\, <"seek solutions which have the following form:
with the same radius as the electron beamoimected to

the target. Thepresence ofthe tube limits thespace _
charge depression diie beam which will in turrreduce q)(r,z) B (,U(Z)JO(GI’) ®)
the emitted ion current. and
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3/2(ar) (6)  Note that if this minimum value igreaterthan zero
then the integral will be finiteregardless ofthe upper

limit of integration inEquation [11]andthus will not be

a solution. Thereforepy must have a value such that

Xmin = 0. That is, we must have

3(r) = Ao,
wherey(z) and/g are to be determined.
Substitution of Equations [2] through [6]into
Equation [1] yields -
d’y  4mp, 4m\, M 1
i s e
V¥

@) p=2/3/3 and Q=Q, =1/+3. (16)

Using this result wecan solve Equation [11]. The
where we havelefined adimensionless axiatoordinate solution is shown in Figure 2. Note that the potential
(=az. If we multiply Equation [7] by d/d{ we can changes rapidly over a distance of order the beam radius.
obtain a first integral

Ty 87p 167\, M 0
g—wg =¢g'-—Cy+r——2 . @®
dd a? a 2e 8
where we have used the condition for space charged i
emission to eliminate the constant of integratiom., 1
dy/d¢=0 at the emitting surfade=0 wherap=0).
To proceedurther wedefine adimensionlesssariable 2
Q and a dimensionless constanas

_ |2
Q=qa g/ 8mp, ©) Fig. 2. Solution of Equation [11]C is plotted vsQ.

and
With the solutions given by equation [16] we can

— ) 32
= 16TZ\0 MD a D3 . (10) immediately determine the asymptotic potential as

a \“ZeEBTIpOE

Y - Y =8mp, / 3a? a7
With these definitions we may solve Equation [8] as (we
choose the positive root since wegpect to increase and the ion current constant as
with Q)

: J /2
LS ay  p-2 @ 2emit vhec g,
0 Qi-Q4u 2 ° 3y316m\ MU3g® U a’

We expecthat as{ - «, Q will approach dinite  Note that the final result for the icgurrent resembles the
asymptotic valuecorresponding tothe space charge classical Child-Langmuir law for diodewith a potential
depressegpotential of the beam. Thus must have a given by the beam potentiahd an"A-K gap" given by
value such that the integral in Equation [11]  as the beam radius.

Q - Q the asymptotic value. We note that the radical in BY integrating over the beam profile we find that
the denominator of Equation [1Yhust bereal for a 4 |

hysical solution to exist. Let uBind its minimum. —
rIge);ining the radicand gewe have Wmax = 3 X01~]1(X01)C 132,041 (kV) (19)

XE Q*-Q+ 2 (12) and that the asymptotic neutralization fraction of heam
and by the ions is
dy/dQ=30°-1=0 (13) ;
so that Pion (1.2 = )/ |Opear(r)] =1/ 93 = 0.064.  (20)
Q, =+J1/3. (14)

The potential gives rise to an asymptotic Epeedgiven

From the derivative of Equation [13] we sethat the through Equation [2] as

positive root of Equation [14] will correspond to a
minimum of the radicand Vinax = 2.48x10° /1 .Z/ A (cmisec) (21)

X = =21 33+ 1. (15) _
where Z and Aarethe chargestateandatomic number of
the ions respectively.

831



3 FOCUSING EFFECTS OF
BACKSTREAMING |ONS

Examination of Equation [21] reveathat substantial Radius

motion of backstreamingons is possibleduring asingle

electron beanpulse. Forexample for a 4 kAbeam

protons will propagate approximately 50 cm upstream

after 60 ns, singly charged carbon ions would travel 14 cm

in the same timeand singly chargedtantalum ions (a

typical target material) would move only about 3.5 cm. Radius

These propagation distances are comparable tothe
length of the final focusing lens iradiographysystems Rs]
and sowould beexpected toexert a substantial focusing
force on the electron beam.

An estimate of the effects of these ions carob&ined
by using anenvelope equation fothe beam. By
computing the radial electric field produced by the ions
averagingthe product ofthis field with radius over the : . . .
beam profile it is possible tderive asimple equation for azn?flthe disruption time follows from Equations [21] and
the rms (root mearsquare)radius of the beam [3]. [23] as —

Assuming a uniform distribution for the beam profile and T, =2/ V; =29.5Ry VB2AI £,Z 11,5 (NS).  (24)
using the Lapostolle emittan¢E) we canthen obtain an
equation for the edge radius R tbe beam (withouspace For example if B=0.05 cm,|=2kA andy=12.7 wefind

charge) as that z=3.64 cm and§=10.4 ns for proton emission.

4 CONCLUSIONS

. N . . . We haveprovided anexact analyticsolution to the

where f, is the neutralization fraction (given in tHaeeer problem of thespace chargémited flow of ions off the

can" model by Equation [20])gtmc3/e=17 kA andE is surface of a targedurrounded by #ight fitting cylindrical

the Lapostolle emittance. tube of the sameliameter asthe electron beam. The
As the ionspropagate upstream we expect the type QﬁeCt.S ofthese iOﬂSh?.VG beertreatedwith an gnvelope

behavior shown in Figure 3a to occur. Equation [22] c&fluationand the scaling laws for the disruption of the

be solved fordifferent "slices" of the beancorresponding focal spot have been derived.

to different distance¢rom the head ofthe beam. Each

slice will experience an ion column differentlength and 5 ACKNOWLEDGMENTS
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Fig. 3. (a) Trajectories of different beam "slices". (b)
aﬁg:\dius as a function of time at the target plane.
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