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Abstract

Computational tools for the design of accelerating
structures are in use since decades. While highly accurate
methods exist for quasi two dimensional cavities, fully
three dimensional modeling with high precision is still a
‘big challenge’.

The most widely used computer code in this area is
MAFIA, basing on the Finite Integration Theory (FIT,
[1,2]). While being well known for its robustness and
reliability, MAFIA nevertheless suffers somewhat from a
deficiency in being able to model very complicated 3D-
cavities including curved boundaries with high precision.

In this paper we present two recently developed algo-
rithms, facing this challenge within FIT: the usage of
generalized non-orthogonal computational grids (NO-
FIT), and the so-called Perfect Boundary Approximation
(PBA) technique. Both methods represent consistent
extensions of FIT, preserving all important properties as
second order accuracy and stability of the transient
solver. Especially the PBA technique reveals to be a
highly efficient method, as it combines easy-to-use Carte-
sian grids with a perfect approximation of boundaries.

We compare MAFIA with the PBA technique for typi-
cal accelerator components, and it turns out, that the PBA
technique is more than one order of magnitude faster than
the conventional method if many non Cartesian metallic
boundaries appear inside the modeled structure.

1  INTRODUCTION
The most common disadvantage of the Finite Integra-

tion Technique in three dimensions is the usage of Yee-
type [3] cartesian meshes (cf. Fig. 1a), being quite in-
flexible, if complex, non-orthogonal structures have to be
discretized. Even with the concept of triangular fillings
(cf. Fig. 1b), not only the local electric and magnetic
field, but sometimes also global quantities like resonance
frequencies and Q-values suffer from the modeling errors
along curved boundaries.

In the field of the FDTD-method, which is equivalent
to FIT for transient calculations, several approaches have
been published in the last years, trying to overcome this
problem. Most of these algorithms, however, either suffer

from stability problems, or do not show the same high
efficiency properties as FDTD referred to both memory
and CPU-time requirements. In this paper we present two
algorithms, which can handle curved boundaries and are
not only provably stable, but also highly accurate and
efficient. Included in the matrix-formalism of the FIT,
these algorithms are not only applicable to RF-problems,
but also to the calculation of static fields, time-harmonic
fields, the interaction with charged particles, and other
related problems.

2  ALGORITHMS

2.1  FIT on Non-Orthogonal Grids

The most general approach to handle curved bounda-
ries is to allow generalized non-orthogonal grids (Fig.
1c). The basic idea to extend the FDTD-method on such
grids has already been formulated in 1983 [4], including a
local interpolation scheme for field components. Fulfill-
ing  the symmetry-condition in this interpolation process,
we get an explicit time-stepping method with proven
stability properties [5].
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Figure 1: Grid approximations of rounded boundaries:
Standard (a), triangular (b), non-orthogonal (c), PBA
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The non-orthogonal algorithm has been implemented
in MAFIA (experimental status), and successfully applied
to several transient RF-calculations, as well as to 2D and
3D eigenvalue computations. As the method reduces to
standard FIT for orthogonal meshes, interfacing orthogo-
nal with non-orthogonal grids is trivial. The numerical
cost is increased by the interpolation scheme by a factor
between 2 and 3 for 2D- or 3D-problems, respectively.

2.2 Perfect Boundary Approximation Technique

The application of the non-orthogonal algorithm is
sometimes limited by the increase of the numerical cost,
and, last but not least, by the requirement to supply a
body-fitted, structured, non-orthogonal grid.

As an even more efficient approach we implemented
the Perfect Boundary Approximation (PBA) Technique.
In this method, the (orthogonal) computational grid does
not have to be conformal to the rounded boundaries (Fig.
1d). Instead, also sub-cellular information is taken into
account, leading to an algorithm with second order accu-
racy for arbitrary shaped boundaries. Except for a some-
what more complicated preprocessing, there is only
slightly additional numerical cost during the iteration (the
factor being near to one). Moreover, the grid generation
becomes very easy, as there is no need for a highly re-
solved mesh near by non-orthogonal shapes. In most
cases, even equidistant meshes produce highly accurate
results. However, adaptive mesh generation has been
implemented to achieve the highest possible accuracy for
a given number of mesh cells, including user defined
accuracy requirements.

The application of the PBA-technique to several prob-
lems from microwave- and accelerator-components is
presented in the next chapter.

3  NUMERICAL EXAMPLES

3.1  Twisted Waveguide

In the first example, the reflection parameter S11 at the
input port of a twisted waveguide has been calculated.
Fig. 2 shows the discrete model using a non-orthogonal
mesh, and in Fig. 3 the broadband results for three grid
resolutions are shown. All three curves are very close

together. The result is already well converged for the
coarsest grid.

3.2  TESLA Input Coupler

This example (cf. Fig. 4) shows a planned new input
coupler for the TESLA superconducting cavities1. A rec-
tangular coupler in-between two cavity cells is connected
to an elliptical waveguide. A ceramic window is located

in the middle of the elliptical guide, followed by a second
rectangular waveguide.

Fig. 5 shows the geometry of the transition of the rec-
tangular guide to the elliptical one. The connection be-

1 Design by M. Dohlus and A. Jöstingmeier (DESY)
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Fig. 3: Twisted Waveguide: reflection coefficient
S11 for different grid resolutions
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Fig. 4: TESLA 9-cell cavity with planned input
coupler structure.

Fig. 2: Twisted Waveguide: non-orthogonal grid-
model and electric field (steady state).

Fig. 5: Transition rectangular to elliptical waveguide.
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tween the two waveguides was rounded with a rounding
radius of 1cm.

Some more geometric details, the dielectric window
and two matching rods (radius 2mm) inside the elliptic
waveguide, are shown in Fig. 6.

After a transient field simulation including an on-line
DFT transformation we obtain the entire spectrum for the
S-parameters, as shown in Fig. 7:

The design shows a very good reflection property at
the design frequency of 1.3 Ghz, although it was not yet
optimized and was meant to serve here only as a demon-
stration example for the new PBA-algorithm.

3.3  Coax to Waveguide Coupler

The last example is the (mismatched) coax to
waveguide coupler structure shown in Fig. 8. It has been
simulated with both the new PBA-technique and standard
MAFIA.

The results for the transmission coefficient demonstrate
the high accuracy of the PBA-method: even the calcula-
tion with the coarsest grid resolution (10 mesh steps per
wavelength) yields a S12-curve close to the final result,
whereas the standard method needs more than 60 steps/λ
to achieve a comparable accuracy. The numerical cost of
the simulation thus can be reduced by about two orders of

magnitudes, which is a typical result for structures con-
taining many non Cartesian geometrical details.

4  CONCLUSION
The Finite Integration Theory, combined with either

non-orthogonal computational grids or with the newly
developed Perfect Boundary Approximation Technique,
is able to model structures with very fine geometric de-
tails with high accuracy. The application especially of the
PBA-technique to typical accelerator devices demon-
strates the high efficiency of the method compared to
conventional FD- or FE-approaches.
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Fig. 6: Details inside the elliptical waveguide.

Fig. 8: Coax to waveguide coupler (with electric
field in steady state), transmission coefficient for
different grid resolutions (MAFIA and PBA results).
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Fig. 7: S-Parameter of the Waveguide Transition.
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