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Abstract

Single bunch stability is analysed by solving the equation
of motion of the particles travelling in a linac, for a Gaus-
sian distribution of charge, a linear variation of the trans-
verse wakefield along the bunch, a smooth focusing and
negligible acceleration. The treatment is based on a non-
standard perturbation expansion that has been specifically
developed for this study and preserves at each order the in-
trinsic detuning likely to stabilise the resonant beam break-
up. It provides a closed expression for the tune shift along
the bunch resulting from BNS damping and autophasing,
methods proposed in the past to control the emittance, and
a first-order solution for the transverse off-sets within the
bunch. The analytic result obtained makes it possible to
study the behaviour of the solution and compute the emit-
tance dilution in specific cases. The present theory is a use-
ful complement to the numerical simulations done with the
MUSTAFA code in the Compact Linear Collider scheme
(CLIC). It also gives an interesting as well as comprehen-
sive view of the physics involved in the single-bunch mo-
tion and the damping of the instability.

1 EQUATION OF MOTION

Since in most linear colliders a flat beam design (low ver-
tical to horizontal beam size ratio) is used, emittance blow
up due to transverse wakefields is most critical in the ver-
tical plane. Disregarding acceleration, using a weak fo-
cusing model for the betatron motion and assuming a lin-
early varying wakefield within a single bunch the equation
of motion reads as (refs [1, 2])
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The two independent variabless andz describe the posi-
tion of the bunch inside the linac, and the position inside
the bunch, respectively. The quantityq = 1= ��y is the
weak focusing tune,�k(z) az-dependent additional focus-
ing force (arising from a correlated energy spread and/or
RF quadrupoles) and�(z) the line charge density distribu-
tion. The constantC is defined byC = 4��0reN where
N is the number of particles inside the bunch andre is the
classical electron radius.W0 is the value of the transverse
wake at the tail of a truncated bunch in units ofV=(Asm2).
For�(z) a truncated Gaussian distribution (�2�z) has been
used. In order to facilitate the analysis, the Gaussian has
been replaced by its 4-th order Chebyshev approximation
within �2�z which results into an error of not more than

4%. After normalisation the thus approximate expression
for � becomes
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wherelB = 4�z.
We choose to deal with the effect of an initial offset�0

as well as an initial slope alongz. Although we do not con-
sider here randomly misaligned quadrupoles and accelerat-
ing cavities, it has to be noted that these off-set and slope
represent well the misalignment of a single component of
the linac. The initial conditions are then

x(0; z) = �0 + �1z (3)
dx

ds
(0; z) = 0 (4)

2 SEPARATION OF VARIABLES AND
AUTOPHASING

Equation (1) is a linear, partial, homogeneous integro-
differential equation of second order. This type of equa-
tion can often be solved analytically by separating the two
independent variables, i.e.s andz. Rewritingx(s; z) as
x = X(s) + y(s; z) and performing some algebra leads to
the following new equations forX andy

d2X
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The coherent motion (5) is given by the unperturbed be-
tatron equation and its solution according to the initial con-
ditions given above is

X(s) = �0 cos qs = �0 cos
s
��y

(7)

Considering the case of noz dependent focusing across the
bunch (�k(z) = 0), we face a resonant situation due to the
fact that the frequencyq of the unperturbed betatron mo-
tion appears on the right hand side and generates a secular
solution ins. This is related to the well-known head to tail
instability of a single bunch traveling through a structure
with wakefields. In order to suppress the resonance excita-
tion term, it is necessary to introduce a tune spread along
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the bunch [3] cancelling the coefficient ofX(s) in Eq. (6).
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In this paper we do not specify the mechanism creating
the detuning (RF quadrupoles or correlated energy spread).
However, in order to also study the bunch dynamics in the
case of no correction or only partial correction through a
z-dependent focusing, the actual detuning is defined as
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where� = 0 means no correction while� = 1 corresponds
to theautophasing condition(8) (resonance suppressed).
Inserting our definition (9) into Eq. (6) gives

@
2
y

@s2
+ q

2

�
1 +

�CW0


0lBq
2

Z z

0

�(z�)(z � z
�)dz�

�
y =

(�� 1)
CW0


0lB
X(s)

Z z

0

�(z�)(z � z
�)dz� +

CW0


0lB

Z z

0

�(z�)(z � z
�)y(s; z�)dz� (10)

3 PERTURBATIVE SOLUTION

Introducing the normalised bunch coordinate� = z=lB

and further separatingy such asy(s; �) = �1lB� cos qs +
v(s; �) results in
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In order to avoid secular terms and preserve the detun-

ing of the oscillatory motion we use a specificpartial per-
turbation expansion of the solutionv(s; �). It consists
of separating the perturbation of the (analytically) solvable
part of the equation of motion (11), marked withE in (12),
from the integral driving-term on the right hand side of (11)
marked with�. Both � andE indicate that the associated
terms contain products of the wakefieldW0 with the os-
cillation amplitude due to the wakefieldsv(s; �) and are
perturbations w.r.t. the rest of the equation. The expan-
sion is only done w.r.t.� and not w.r.t.E describing the

z-dependent tune shift. Then the perturbation series reads
asv = v

(0)(s; �;E) + �v
(1)(s; �; E) + � � � and no resonant

terms arise at any order. At the end of the computation,
both � andE are set to unity. A detailed description and
justification of the partial expansion method introduced for
this study is given in [2]. Setting� = 0 in eq. (11) leads
to a linear, inhomogeneous differential equation of second
order and its solution is
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The equation for the first order perturbation contribution
v
(1) becomes

@
2
v
(1)

@s2
+ �q2(�)v(1) =

CW0lB


0

Z �

0

�(lB�)(� � �
�)v(0)(��; s)d�� (15)

The detailed solution of this equation is given in Ref. [2].
As a first example, Fig. 1 shows a typical solution

(to order zero of the perturbation) of the formy =
�1�lB cos qs+v

0(s; �) at a distance of520 m downstream
of the linac. The increasing frequency of the incoherent
bunch oscillations from the head (� = 0) to the tail (� = 1)
of the bunch becomes clearly visible.
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Figure 1: Autophasing solution in CLIC

Next we show in Fig. 2 the solution (including the first
order termv(1) of the perturbation) for� = 0, i.e. in the
absence of detuning along the bunch. While the full line
represents the analytical solution, the points indicate the
results obtained with the tracking code MUSTAFA [4].

By comparison with the detuned example of Fig. 1, the
amplitude of the oscillation increases significantly because
of the resonant effect. However, some residual detuning
remains visible due to the influence at large amplitudes of
the last integral term in Eq. (11).
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Figure 2: Resonant solution in CLIC ats = 520 m

4 EMITTANCE DILUTION
Since a low emittance beam is needed at the interaction
point to provide high luminosity collisions, it is interest-
ing to study the emittance dilution due to wakefields in
the accelerating structures of the collider. If we consider
the emittance increase due to transverse wakes in a single
bunch, the total normalised emittance at the end of the main
linac is given by
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and y = �1lB� cos qs + v(s; �). Instead ofv we use
v(0)(s; �) as given in Eq. (13) since it is believed to give
the strongest contribution. Althoughy has then a relatively
simple form, the integral in (17) becomes non elementary,
leading to complicated expressions of trigonometric and
Fresnel functions. However, it can be demonstrated that the
emittance in the case of an initial offset tends to an asymp-
totic value ass goes to infinity. It is straightforward to
compute this limit by only considering slowly oscillating
terms in� ass increases and averaging the fast oscillating
terms before performing the quadrature. As above, all the
details are described in Ref. [2]. The result for the asymp-
totic emittance becomes
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where the parametersa
�2 toa2 are polynomial expressions

of the transverse wakefieldW0 with coefficients that are ra-
tional functions of�0 , �1 , q and lB . They are all listed
in Ref. [2]. The form of the expression (18) makes it ob-
vious that�y must have a certain minimum as a function of
�, since the first and second terms decrease with� while
the last two increase. Evidently� = 0 leads to an infinite
asymptotic emittance due to the resonance effect.

Fig. 3 gives an illustration of this effect for the case of
�0 = �10 �m, �1 = 0:5 and0:4 < � < 1:2.
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Figure 3: Asymptotic emittance growth as function of�

The same figure 3 clearly shows for�1 = 0:5 that the
autophasing condition is not leading in general to the
minimum single bunch emittance. Instead, the mini-
mum is shifted to a lower value of� where two effects are
best balanced: namely an increase of the decoherence of
the bunch with� that leads to an emittance growth and a
rise of the distance from the resonance with� that induces
an emittance reduction. The actual (flat) minimum of the
emittance in this example appears at a value of� near75%
of the one corresponding to the autophasing condition.

5 CONCLUSIONS
The equation of the transverse single-bunch motion has
been analytically solved for initial off-set and slope along
the bunch, similar to those generated by the misalignment
of a single linac element. Weak focusing is used and the ac-
celeration within a linac sector is not included. The trans-
verse wakefield along the bunch is taken as linear and the
charge density approximated by Chebyshev polynomials.
The transverse displacementx(s) is split into a coherent
termX(s) and a party(s; z) that depends on the position
z in the bunch. A particular partial perturbation treatment
worked out by the authors is then applied in order to keep
the detuning property through all orders and prevent the
creation of artificial resonances. In this way, zero and first
order solutions forx as well as the asymptotic emittance
dilution for s ! 1 have been derived as functions of the
fraction� of the wakefield that is damped. They all agree
with the results of the code MUSTAFA and confirm the
existence of a given� where the single-bunch emittance
blow-up is minimum. This minimum is proven not to cor-
respond generally with autophasing.
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