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Abstract 4%. After normalisation the thus approximate expression

Single bunch stability is analysed by solving the equatio];1Or p becomes

of motion of the particles travelling in a linac, for a Gaus- 75 Al /4 21 /4 4
sian distribution of charge, a linear variation of the trans-p(z) = TS [1 ~ 100 (l_ - 2) + 20 (— - 2)

verse wakefield along the bunch, a smooth focusing and B B B

negligible acceleration. The treatment is based on a non- (2)
standard perturbation expansion that has been specificaférels = 4o-. _ o

developed for this study and preserves at each order the in-V& choose to deal with the effect of an initial offset
trinsic detuning likely to stabilise the resonant beam breaf@S Well as an initial slope along Although we do not con-

up. It provides a closed expression for the tune shift alorgjder here randomly misaligned quadrupoles and accelerat-
the bunch resulting from BNS damping and autophasin}9 cavities, it has to_be_noted that the;e off-set and slope
methods proposed in the past to control the emittance, aFgPresent well the misalignment of a single component of
a first-order solution for the transverse off-sets within th&1€ linac. The initial conditions are then

bunch. The analytic result obtained makes it possible to

study the behaviour of the solution and compute the emit- 2(0,2) = a0 + a1z C)
tance dilution in specific cases. The present theory is a use- d_a’(oy 2)=0 (4)
ful complement to the numerical simulations done with the ds

MUSTAFA code in the Compact Linear Collider scheme
(CLIC). It also gives an interesting as well as comprehen- 2 SEPARATION OF VARIABLES AND
sive view of the physics involved in the single-bunch mo- AUTOPHASING

tion and the damping of the instability. Equation (1) is a linear, partial, homogeneous integro-

differential equation of second order. This type of equa-
1 EQUATION OF MOTION tion can often be solved analytically by separating the two
independent variables, i.es andz. Rewritingz(s, z) as

Since in most linear colliders a flat beam design (low ver;, _ X(s) + y(s, z) and performing some algebra leads to
tical to horizontal beam size ratio) is used, emittance bloyy,o following nejw equations fak andy

up due to transverse wakefields is most critical in the ver-
tical plane. Disregarding acceleration, using a weak fo- 2Xx

2y —
cusing model for the betatron motion and assuming a lin-  “g¢2 teX=0 ®)
early varying wakefield within a single bunch the equation &y )
of motion reads as (refs [1, 2]) ge2 T+ Ak(2)ly =
: CWy [~
0%z (s, 2 . X [_ 2Ak(2) + 0/ V(2 — 29Vd2* | +
T2 | 11+ Ak(a)Jas,2) = () [0 Ak() + Z00 [ P =2z
CWO z CWO /Z * * * *
V(2 — 2" “)dz* p(z)(z = 2%)y(s, 2%)dz (6)
e LR R R T C Rl A

The two independent variablesand - describe the posi- 1n€ coherentmotion (5) is given by the unperturbed be-
tion of the bunch inside the linac, and the position insidg’_‘t,ro” eq_uatmn and !ts solution according to the initial con-
the bunch, respectively. The quantily= 1/4, is the ditions givenabove is

weak focusing tune)k(z) az-dependentadditional focus- s

ing force (arising from a correlated energy spread and/or X(s) = agcosgs = ag cos 3, ()

RF quadrupoles) and z) the line charge density distribu- Y

tion. The constan€' is defined byC' = 4rweqr. N where Considering the case of nodependent focusing across the
N is the number of particles inside the bunch apds the bunch Ak(z) = 0), we face a resonant situation due to the
classical electron radiud¥, is the value of the transverse fact that the frequency of the unperturbed betatron mo-
wake at the tail of a truncated bunch in unit§of(Asm?).  tion appears on the right hand side and generates a secular
Forp(z) atruncated Gaussian distributichZo.) has been solution ins. This is related to the well-known head to tail
used. In order to facilitate the analysis, the Gaussian hasstability of a single bunch traveling through a structure
been replaced by its 4-th order Chebyshev approximatiamith wakefields. In order to suppress the resonance excita-
within +20. which results into an error of not more thantion term, it is necessary to introduce a tune spread along
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the bunch [3] cancelling the coefficient &f(s) in Eq. (6). z-dependent tune shift. Then the perturbation series reads
. asv = v (s, E) + evM (s, ¢, E) + - - - and no resonant

CWo /“ p(z*)(z — 2*)dz*  (8) terms arise at any order. At the end of the computation,

Y0lBg* Jo bothe and E are set to unity. A detailed description and

rgstification of the partial expansion method introduced for

Ak(2) avTo =

In this paper we do not specify the mechanism creati
the detuning (RF quadrupoles or correlated energy sprea ‘a linear, inhomogeneous differential equation of second
However, in order to also study the bunch dynamics in th8rder and ’its solution is

case of no correction or only partial correction through a
z-dependent focusing, the actual detuning is defined as ,(0) —

is study is given in [2]. Setting = 0 in eq. (11) leads

a0+ (35 = ) anln] oosas—cos (@(0)s)]

CWo ; * * * (13)
AK() = AAk(:)avro = Ao [ p(e) - )d(g o
_ ACW,
where\ = 0 means no correction while = 1 corresponds 7<) =4 {1 7 X (14
. . Y04
to theautophasing condition(8) (resonance suppressed). ,
Inserting our definition (9) into Eq. (6) gives 16 6 48 5 79, 1 5 3 5
23< 23< + 46< + 23< + 23<
821} 9 )\CWO z % % % . . . . .
S +q |1 5 | p(z)(z—2")dz"|y = The equation for the first order perturbation contribution
ds YolBa® Jo v becomes
A=1) W X(s) /Z p(z")(z — z")dz" + ?v(M) 5
Yol 0 B2 T 7 (o) =
o /Z p(z*)(z — 2%)y(s, 2%)dz" (10) CWolg (¢ o
2ol Jo ’ 28 [ plta0)(¢ = ¢ ) (15)
0
3 PERTURBATIVE SOLUTION The detailed solution of this equation is given in Ref. [2].

_ _ _ As a first example, Fig. 1 shows a typical solution
Introducmg the nor.mallsed bunch COOI’dIn@teZ Z/lB (to order zero of the perturbation) of the forg] =
and further separatingsuch agy(s, () = a1lp{cosgs + ¢l cosgs+1°(s, ¢) at a distance 0520 m downstream

v(s, ¢) resultsin of the linac. The increasing frequency of the incoherent
) bunch oscillations from the head £ 0) to the tail { = 1)
0 12) + (v = Wo cos qs X of the bunch becomes clearly visible.
Os Tols y(Q)[jum]
¢ 2 * * 200 T T T T T T T
a0(1 =) = sl | tholtad)(C = ) ol s s gy = 10 7
1 = U.
¢ 100 - A=1 1
+a1/ I%C*P(IBO(C_C*)dc*] 50 - 1
0
CWoe [© X
€ p * * * * - - -
+00 [ B¢ C - e, ) @) 50
Y0iB Jo -100 - 8
where -150 7 ]
_200 1 1 1 1 1 1 1 1 1
A CWo [¢ 0 0.10203040.506070809 1
Q) =¢" |1+ E / (15" (¢ - c*)dc*] ¢
YotBG” Jo

(12) Figure 1: Autophasing solution in CLIC

In order to avoid secular terms and preserve the detun- oyt we show in Fig. 2 the solution (including the first
ing of the oscillatory motion we use a specifiartial per- 4o termp(D) of the perturbation) fo = 0, i.e. in the
turbation expansion of the solutionu(s, ¢). It CONSIsts apsence of detuning along the bunch. While the full line
of separating the perturbation of the (analytically) solvablg,resents the analytical solution, the points indicate the
part of the equation of motion (11), marked wkhin (12), = ye5)its obtained with the tracking code MUSTAFA [4].
from the integral driving-term on the right hand side of (11) By comparison with the detuned example of Fig. 1, the

marked withe. Bothe and £ indicate that the associated 5 jjityde of the oscillation increases significantly because
terms contain products of the wakefielty with the 0s- o the resonant effect. However, some residual detuning

cillation amplitude due to the wakefieldgs, () and are omains visible due to the influence at large amplitudes of
perturbations w.r.t. the rest of the equation. The expamsq |ast integral term in Eq. (11).

sion is only done w.r.t.e and not w.r.t. E describing the
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Figure 2: Resonant solution in CLIC at= 520 m Figure 3: Asymptotic emittance growth as functiomof
4 EMITTANCE DILUTION The same figure 3 clearly shows far = 0.5 thatthe

] ] ] ) _autophasing condition is not leading in general to the
Since a low emittance beam is needed at the interactiofinimum single bunch emittance Instead, the mini-

point to provide high luminosity collisions, it is interest- ..\ is shifted to a lower value of where two effects are

ing to study the emittance dilution due to wakefields iegt pajanced: namely an increase of the decoherence of
the accelerating structures of the collider. If we considef,q punch withi that leads to an emittance growth and a
the emittance increase due to transverse wakes in a singlg, of the distance from the resonance witthat induces

bunch, the total normalised emittance at the end of the map, emittance reduction. The actual (flat) minimum of the
linac is given by emittance in this example appears at a valug oéar75%

of the one corresponding to the autophasing condition.
Yetor = Yeinj + Alrey) (16) ponding prasing

where 5 CONCLUSIONS

5 The equation of the transverse single-bunch motion has
(s, C) + 1 <@(S, C)) ¢ been analyti_ca!ly solved for initial off-set and sI_opg along
q \0s the bunch, similar to those generated by the misalignment
(17) ofasingle linac element. Weak focusing is used and the ac-
andy = aylp(cosgs + v(s,(). Instead ofv we use celeration within a linac sector is not included. The trans-
v (s,¢) as given in Eq. (13) since it is believed to giveverse wakefield along the bunch is taken as linear and the
the strongest contribution. Althougthas then a relatively charge density approximated by Chebyshev polynomials.
simple form, the integral in (17) becomes non elementarThe transverse displacements) is split into a coherent
leading to complicated expressions of trigonometric antérm X (s) and a pary(s, z) that depends on the position
Fresnel functions. However, it can be demonstrated that thein the bunch. A particular partial perturbation treatment
emittance in the case of an initial offset tends to an asymprorked out by the authors is then applied in order to keep
totic value ass goes to infinity. It is straightforward to the detuning property through all orders and prevent the
compute this limit by only considering slowly oscillating creation of artificial resonances. In this way, zero and first
terms in¢ ass increases and averaging the fast oscillatingrder solutions for: as well as the asymptotic emittance
terms before performing the quadrature. As above, all thdilution for s —+ oo have been derived as functions of the
details are described in Ref. [2]. The result for the asymgraction )\ of the wakefield that is damped. They all agree
totic emittance becomes with the results of the code MUSTAFA and confirm the
_ ao a, ) existence of a giver\ where the single-bunch emittance
Jim (yoey) = Yo€inj + 5+~ FaotaA+a:A” (18)  plow-up is minimum. This minimum is proven not to cor-
respond generally with autophasing.
where the parametets » to a» are polynomial expressions
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