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Abstract

Particle accelerators are playing an increasingly important
role in basic and applied science, and are enabling new
accelerator-driven technologies. But the design of next-
generation accelerators, such as linear colliders and high
intensity linacs, will require a major advance in numeri-
cal modeling capability due to extremely stringent beam
control and beam loss requirements, and the presence of
highly complex three-dimensional accelerator components.
To address this situation, the U.S. Department of Energy
has approved a “Grand Challenge” in Computational Ac-
celerator Physics, whose primary goal is to develop a paral-
lel modeling capability that will enable high performance,
large scale simulations for the design, optimization, and nu-
merical validation of next-generation accelerators. In this
paper we report on the status of the Grand Challenge.

1 INTRODUCTION

Several accelerator projects are planned or under consider-
ation that will have major impacts in basic and applied sci-
entific research. Examples include the Next Linear Collider
(NLC),the Large Hadron Collider (LHC), the Spallation
Neutron Source (SNS), and fourth-generation light sources.
All of these projects will require high-resolution modeling
far beyond that which has ever been performed by the ac-
celerator community. Similar modeling will be needed for
proposed accelerator-driven technologies, including Accel-
erator Production of Tritium (APT), Accelerator Transmu-
tation of Waste (ATW), and Accelerator Driven Energy
Production (ADEP).

For example, future high average power linear accelera-
tors, such as the APT, will have to operate with extremely
low beam loss (� 0:1 nA=m) to prevent unacceptably
high levels of radioactivity. To ensure that this require-
ment will be met, simulations with on the order of 100
million particles are needed. An equally challenging mod-
eling problem exists in the NLC for which the linac design
is dominated by the issue of beam emittance growth due to
long-range transverse wakefields. To suppress this effect,
a complex 3D accelerating structure, the Damped Detuned
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Structure (DDS), has been developed to control the wake-
fields and it is necessary to verify the effectiveness of the
design by numerical simulation. This entails modeling a
complete accelerator section that consists of 206 complex
three-dimensional cavities requiring hundreds of GBytes of
memory. It is evident that these simulations are beyond the
desktop computer’s capabilities, and can only be performed
on the most advanced high performance computing (HPC)
platforms using software and algorithms targeted to paral-
lel and distributed environments.

In 1997 the U.S. Department of Energy initiated a Grand
Challenge in Computational Accelerator Physics to support
a collaborative effort involving LANL, SLAC, UCLA, and
Stanford, together with two HPC centers, the National En-
ergy Research Scientific Computing Center (NERSC) and
the Advanced Computing Laboratory (ACL). The primary
goal of this project is to develop a new generation of ac-
celerator modeling tools for HPC platforms, and to apply
them to large complex problems of importance in future
accelerators, including those mentioned above. In this pa-
per we will report the progress-to-date in two main thrust
areas: electromagnetics and beam dynamics.

2 ELECTROMAGNETIC MODELING

The development of new electromagnetic tools for the
Grand Challenge project originated from advanced acceler-
ator structure research for the NLC. The main thrust of the
effort is aimed towards large-scale simulations of realistic
3-D structures. Such a capability can be applied to system-
scale analysis such as finding the wakefields in the entire
DDS as described in Fig. 1, or to individual component de-
sign such as one cell in the DDS Fig. 2, by modeling with
an accuracy approaching fabrication tolerance level. The
new set of tools incorporates the following features to en-
able the high-resolution modeling required: (i) the use of
unstructured grids to capture realistic geometries, (ii) the
development of refinement algorithms to improve accuracy
and optimize computing resources, and (iii) the implemen-
tation on parallel platforms to take advantage of the latest
in HPC resources for large-scale simulations.

Presently, there are two types of solvers being developed
for the tool set. The first type is formulated in the frequency
domain using linear and quadratic finite elements on an ir-
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Figure 1: One end of the DDS 206-cell section including
the input coupler and HOM load termination.

Figure 2: One-eighth of the DDS cell geometry from a
solid model.
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Figure 3: A non-orthogonal cell for the generalized Yee
algorithm used in�3.

regular grid, and includes eigenmode solvers in two and
three dimensions, named
2 and
3 respectively. The par-
allel versions,
2P and
3P, use MPI and currently run on
the SGI/Cray T3E at NERSC. In the case of
3P , the cal-
culation proceeds in three steps: First, there is the mesh
distribution step with a module called DistMesh that uses
the parallel library ParMETIS for partitioning unstructured
graphs. This is followed by the matrix assembly step which
consists of the finite element formulation that provides the
mass and stiffness matrices for the generalized eigenvalue
problem. The final step is a solution step, with Lanczos or
Jacobi-Davidson algorithms, that utilizes the parallel itera-

tive library AZTEC to solve the sparse linear systems.
The other type of solver is a three-dimensional time-

domain code, called�3, that uses a generalized Yee algo-
rithm on an unstructured grid [1][2], Fig. 3. A leapfrog
time advancement scheme with filtering is implemented as
well as a broadband termination at the waveguide ports.
Therefore it is able to handle pulse transmission for S-
parameter evaluations of RF components over a wide fre-
quency range in a single run. Dipole excitation is also pos-
sible to calculate external Q’s of waveguide-loaded cavi-
ties. A parallel version,�3P, currently runs on a shared
memory machine, like the 4-node Intel Xeon server, using
threads while the distributed memory version for the T3E is
presently under development. The inclusion of a transiting
rigid beam to compute wakefields is planned.

2.1 Examples

We present here some recent results from
3P and�3.
First, we report the modeling of a single DDS cell using

3P on the T3E. Fig. 4 shows the cell geometry partition-

Figure 4: Domain decomposition of the DDS cell.

Figure 5: Mass matrix distribution over 16 processors.
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Figure 6: RFQ cavity for the SNS.

Figure 7: Calculated frequencies and measured data for
two modes of the SNS RFQ cavity.

ing into 8 pieces using DistMesh/ParMETIS. Fig. 5 is the
mass matrix distribution over 16 processors. Together they
demonstrate the importance of domain decomposition to
achieve load balancing. Currently,
3P is the tool we use
to determine the new dimensions for improved versions of
the DDS design. Another
3P result comes from the Spal-
lation Neutron Source project for which we modeled the
RFQ cavity as shown in Fig. 6. This cavity is difficult to
simulate accurately due to the disparate lengthscales be-
tween the focusing vanes, the stabilizing rods, and the cav-
ity proper. Fig. 7 shows the convergence of the calculated
frequencies to measured data for the two modes of interest
when the resolution is increased to require several million
degrees of freedom in the simulation.

Figure 8: Input power coupler for the NLC linac modeled
by �3.
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Figure 9: Field amplitude and phase of accelerating field at
matched condition.

The �3 capability is demonstrated by the matching and
tuning of the input power coupler for the NLC accelerator
section. Fig. 8 shows the mesh used in modeling a pair of
couplers separated by two regular cells.�3 finds the match
by either single frequency or pulse excitation. The reflec-
tion is determined to be 0.005 at 11.424 GHz. The match
is confirmed by the accelerating field amplitude and phase
along the beam axis. Fig. 9 indicates the field that is due
to a travelling wave with the correct phase advance of 120
degrees per cell from coupler to coupler. The advantage
of �3 over other commercial packages will be the ability
to model much larger problems when the parallel version,
�3P, is completed.
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3 BEAM DYNAMICS SIMULATIONS

Many systems involving intense charged-particle beams
can be described by the Vlasov/Poisson equations. There
are two main approaches to solving these equations: parti-
cle simulation techniques and direct methods.

In the particle simulation approach, the beam distribu-
tion function is represented by a number of macroparti-
cles, typically 10’s to 100’s of millions in a large scale
simulation. Often the single particle equations of motion
are derived from a Hamiltonian which includes both ex-
ternally applied fields and a mean field due to the beam’s
space charge:H = Hext + Hsc. Such a form is ideally
suited to the application of symplectic split-operator meth-
ods [3]. These methods provide a powerful framework ca-
pable of dealing with the complicated Hamiltonians often
encountered in accelerator physics, where the Hamiltonian
is usually approximated by a high-order polynomial in the
phase space variables. Besides being able to treat Hamilto-
nians with many terms, the split-operator approach is easily
generalized to high-order accuracy in time. A well-known
fourth-order algorithm is due to Forest and Ruth [4], and an
arbitrary-order scheme was derived by Yoshida [5]. There
are also implicit symplectic methods that do not require
the Hamiltonian to be split into a sum of exactly solv-
able pieces [3]. Finally, time-dependent systems are easily
treated by “extending the phase space” [4].

Unlike some split-operator treatments that separate the
Hamiltonian into terms involving only position and only
momentum, our particle simulations separate the Hamilto-
nian into terms involving the external fields and terms in-
volving the self fields. The external fields are treated using
well-established techniques from magnetic optics. One ad-
vantage of this approach is that it enables one to take large
time steps, since the dynamics due to external fields is usu-
ally dominated by a linear map which is easily obtained
analytically or numerically. To treat the self fields, we
use a 3D Particle-In-Cell (PIC) approach with area weight-
ing. Open boundary conditions are treated using the con-
volution method of Hockney [6]. We are currently using
and evaluating several methods of implementing our par-
allel particle simulation codes: High Performance Fortran
(HPF), C++ with message passing via the POOMA frame-
work [7], and Fortran 90 with message passing [8]. In our
HPF codes, charge deposition and field interpolation are
parallelized using the method of Ferrell and Bertschinger
[9]. In our codes that use explicit message passing, a “par-
ticle manager” is used to make the data needed by proces-
sors local to the processors prior to charge deposition and
field interpolation.

Stochastic corrections to Vlasov/Poisson evolution oc-
cur due to particle collisions and noise in external fields.
To treat these effects we have modified our PIC codes to
include Langevin forces and damping, which corresponds
to solving the Fokker-Planck equation for the distribution
function. An example is shown in the next section.

3.1 Examples

Fig. 10 shows the horizontal and vertical rms emittances
from a 2D Langevin simulation of a beam in a potential that
can produce chaotic dynamics. In the absence of damping
and diffusion, the motion is governed by the Hamiltonian,

H =
1

2
(p2

x
+ p2

y
) + �x4 + �y4 +

1

2
x2y2 + q	; (1)

where� and� are constants, and where	 is scalar po-
tential associated with the beam space charge. Damping
and diffusion were turned on att = 0 in the simulation,
and the beam approached thermal equilibrium quickly, as
is evident from the emittance curves which reach their fi-
nal values after about 20 units of time. As further evidence
that that beam has reached equilibrium, we turned off the
damping and diffusion att = 100 and observed little or no
change in the emittances.

Though early work in beam halo physics emphasized
1D and 2D models of the transverse beam halo, recent
activity has turned to 3D models including longitudinal
beam halo. We have developed a parallel PIC code called
HALO3D specifically for studying beam halo formation in
3D bunches. Such a code is extremely useful for testing
analytical models of halo formation, such as particle-core
models. A unique feature of the code is that it has a ca-
pability to model a new 3D beam equilibrium distribution,
developed by R. Gluckstern and A. Fedotov of the Uni-
versity of Maryland [10]. It also has the ability to include
nonlinear rf focusing fields, a feature incorporated in col-
laboration with J. Barnard and S. Lund of Lawrence Liver-
more National Laboratory. Based on their CTP (“core test
particle”) code, Barnard and Lund had predicted that the
period-2 parametric resonance widely known to be a ma-
jor source of beam halo could be detuned by the presence
of nonlinear rf fields. This was supported by HALO3D
simulations, as shown in Figs. 11 and 12. These figures
show a stroboscopic plot in longitudinal phase space of test
particles moving in the field of a mismatched beam. The
resonance is evident in Fig. 11, which has a linear model of
the rf fields. In contrast, the resonance is absent in Fig. 12,
which has a nonlinear model of the rf fields.

In addition to HALO3D, we are also developing a new
3D beam dynamics code called IMPACT (Integrated-Map
and Particle Accelerator Tracking code). This code has an
accurate and efficient treatment of RF accelerating gaps,
obtained by numerical integration of the gap transfer map
rather than integration of single particle trajectories. The
code is especially useful for modeling superconducting
proton linacs, where there are only a few types of accel-
erating cavities. An example input geometry that was used
to test the code is shown in Fig. 13. The figure shows the
quadrupole gradient in a FODO cell along with the elec-
tric field on-axis due to accelerating cavities between the
quadrupoles. Finally, we have developed a parallel version
of a code called LINAC, developed by K. Crandall, which
is the primary code used by the APT project for halo simu-
lations. In addition to parallelizing LINAC, we also added
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a 3D space charge capability, as described in the preceding
section.
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Figure 10: Emittance curves from a 2D Langevin simula-
tion of a beam driven to thermal equilibrium.
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Figure 11: z-pz phase space plot from a HALO3D simula-
tion withoutrf nonlinearity.
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