Precise evaluation of characteristics of the multilayer thin-film superconductor consisting of NbN and Insulator on pure Nb substrate

Ryo. Katayama, Y. Iwashita, H. Tongu (ICR, Kyoto U. Uji, Kyoto),

A. Four (CEA/DRF/IRFU, Gif-sur-Yvette), C. Antoine (CEA/IRFU, Gif-sur-Yvette),

H. Hayano, T. Kubo, T. Saeki (KEK, Ibaraki), H. Oikawa (Utsunomiya U., Tochigi),

H.Ito (Sokendai, Ibaraki), R.Ito, T. Nagata (ULVAC inc., chiba)

Introduction

 The maximum accelerating gradient of superconducting cavity is limited by the magnetic field at which vortex avalanche occurs.

 In this study, we calls such magnetic field as "effective H_{c1}", H_{c1}.

 Recently proposed theory predicts that H_{c1} is pushed up by Superconductor-Insulator-Superconductor structure (S-I-S structure).

 In order to verify this scheme, we are trying to make some experiments at Kyoto University.

S-layer

(Bulk Nb)

Motivation of this study

- The proposed theory predicts a optimum set of the parameters to exhibit a good performances.
 - For example, NbN-Insulator-Nb sample is considered.
 - H_{c1} of this sample is shown in the following contour plot.
 - cf.) The effective Hc1 of pure bulk Nb is 180 mT.

- We evaluates Hc1 of S-I-S sample.
 - Top layer: NbN (200 nm)
 - Middle layer: SiO2 (30 nm)
- In order to determine Hc1, the third harmonic voltage method is used.
 - Please refer the poster presentation for details.

Effective Hc1 of S-I-S sample

• Generally, $H_{c1}(T)$ satisfies $H_{c1}(0) \times (1 - (T/T_c)^2)$.

