Oral Poster TUOP06&TUPO036

Vertical test results of plasma in-situ cleaning on low-beta HWR cavity

18-September, LINAC2018, Beijing

Andong Wu, Shichun Huang On behavior of SRF Group Institute of Modern Physics, Chinese Academy of Sciences

Content

- > Carbon contamination experiments on HWR cavity
 - Hydrocarbon adsorption at 4K
 - Carbon contaminants deposited by PECVD
- Plasma cleaning on the carbon contaminated HWR
 - Ar/O₂ RF plasma ignition
 - Vertical test results

Binding energy between CH-contaminant and niobium surface

Weak strength

- SRF cavity is a cryogenic pump at 4K
- Cryogenic adsorption of residual gas and contaminants

Strong strength

- Chemical deposited on SRF cavity surface

Weak strength

- -Standard surface treatment as the baseline.
- -CH₄ contamination by cryogenic adsorption.
- -Warm up to 300K and pump CH₄ out.

CH₄ cryogenic adsorption

- -Performance degraded
- -FE onset decreased by 12%.
- -Quench point decreased by 18%.

CH₄ cryogenic adsorption

-Performance degradation can be removed significantly by warm up to 300K and pumping.

Strong strength

- -Carbon contaminant deposited by PECVD.
- -Ar/CH₄(3%) RF plasma was used.
- -Reaction: $CH_4 \xrightarrow{Plasma} CH_3, CH, C_2H_2....$

Plasma cleaning on carbon deposited HWR

-In-situ cleaning by Ar/O₂ RF plasma

Plasma cleaning on carbon deposited HWR

-Residual gas analysis during cleaning of HWR

Carbon Deposition

- -Performance of HWR decreased
- -FE onset decreased by 15%.
- -Quench point decreased by 16%.

RF conditioning

-Not significantly to remove FE.

Plasma cleaning experiments on HWR

Plasma Cleaning

- -Contaminants was removed and performance was recovered significantly.
- -Compared with standard surface treatment, FE onset and quench point increased by 83% and 28% respectively.

Plasma cleaning experiments on HWR

Plasma Cleaning

- -Contaminants was removed and performance was recovered.
- -X-ray dose of HWR cavity was decreased from several hundred to 4.5 μSv/h significantly.

Welcome to discussion

POSTER INFORMATION

- **TUPO036**
- Today 16:00 18:00
- Conference Room 3&4

PUBLICATION

- [1] A.D. Wu, S.C. Huang et al., Vertical test results of plasma in-situ cleaning on low-beta HWR cavity, TUOP036, this conference.
- [2] A.D. Wu, L. Yang et al., In-situ plasma cleaning to decrease the field emission effect of half-wave superconducting radio-frequency cavities, Nuclear Inst. and Method, A 905 (2018) 61–70
- [3] A.D. Wu et al., Carbon contamination mechanism and performance recovery principle for superconducting radio frequency cavities: in submitting to NIMA.

Thanks