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Abstract 
Energy recovery linacs (ERLs) are potential candidates 

for the high power and high brightness electron beams 
sources. The main advantages of ERL are that electron 
beam is generated at relatively low energy, injected and 
accelerated to the operational energy in a linac, and after 
the use is decelerated in the same linac down to injection 
energy, and, finally, dumped. A merging system, i.e. a 
system merging together high energy and low energy 
beams, is an intrinsic part of any ERL loop. One of the 
challenges for generating high charge, high brightness 
electron beams in an ERL is development of a merging 
system, which provides achromatic condition for space 
charge dominated beam and which is compatible with the 
emittance compensation scheme. In this paper we present 
principles of operation of such merging systems. We also 
describe an example of such system, which we call a 
Zigzag or a Z-system. We use a specific implementation 
of the Z-system for R&D ERL at Brookhaven as the 
illustration. 
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Figure 1.Schematics view of ERL. 

MOTIVATION 
Each ERL loop (Fig. 1) has at least one merging 

system, which includes dipoles. Any dipole is a source of 
coupling between δ = (E − Eo) / Eo,ξ = s − vt( ) longitudinal 
and (x, px) transverse phase space planes.  

The space charge forces repel particles from each other. 
Hence, the particles in the head of the bunch gain energy, 
while the particles at the tail of the bunch lose energy (see 
Fig. 2). This effect is very significant for low energy 
beams with high charge per bunch. Low injection energy 
(well below 10 MeV) is strongly desirable in high current 
ERLs to lessen the radiation hazards and to reduce 
requirements for RF power. 

The use of achromatic system for a merger will 
decouple the motion, but only in the absence of the 
longitudinal space charge forces. In the presence of the 
space charge forces, the coupling resulting from the 
variation of the particle’s energy can cause significant 

growth of the transverse emittance in a traditional 
achromatic system. 

In addition, the emittance compensation schemes [1] do 
not allow using a strong focusing in a merger. This 
requirement limits even further the number of available 
merger schemes used for high charge, high brightness 
electron beams. 
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Figure 2. Variation of electron energy, ∆E= E(s) - E(o), in 
a merger (caused by the space charge forces of 1 nC 
bunch) is a function of its position in the bunch (shown in 
the units of a relative 703.75 MHz RF phase). Different 
colours indicate different locations along the beam line, 
which indices (12,13,18,25,30,44) showing the element 
numbers in lattice file for PARMELA [2]. Fitting is 
defined by eq. (1). 
One of the keys to a successful solution of the above 
problem is finding a correlation between electron’s 
energy change and its location in the bunch. For example, 
Fig. 2 shows results of PARMELA [2] simulation of a 1 
nC bunch with initial “beer-can” distribution [3]. The 
other beam parameters at the cathode were: duration 10º 
(39.5 psec), radius 4 mm, 1.5 cell RF gun with energy 
gain of 3.7 MeV. The energy change of the particle is 
defined by longitudinal electric field E: 

dE
ds

≅ eE ζ( ), 

where ζ - is longitudinal coordinate of the particle 
relative of the bunch center. The resulting dependencies 
(see Fig. 2) fit very well with analytical formula for the 
field of the homogeneously charged cylinder [3]: 

E ζ o( )=
2Q

r2 ⋅ 2l
2ζ o − r2 + (ζ o + l)2 + r2 + (ζ o − l)2( ) (1) 

where Q is the charge, r is the radius and l is the length of 
the beam. 

The most importantly, the fit for the energy changes 
with the formula allows to separate variables and to 
express it as a function of initial longitudinal coordinates 
δo,ζ o( ) and the azimuth s along the orbit (Fig. 3): 

δ(s) ≅ δo + f ζ o( )⋅ (s + α ⋅ s2). 
___________________________________________  
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Thus, energy dependence vs s for any electron is well 
described by its dependence on two parameters – the 
initial energy and the initial phase. Hence, in general case, 
we are seeking a 2-parameter dependence: 

δi(s) = ai ⋅ g1(s) + bi ⋅ g2(s)   (2) 
where: i is the index of the particle, Ei  is the energy of ith 
particle, ai and bi are individual parameters for ith particle 
(presumably some functions of the initial δio,ζ io( )), g1(s) 
and g2(s) are the function of azimuth s, which are the 
same for all particles in the beam. It is important that 
results of following method are completely independent 
from the specific dependence of parameters ai and bi on 
δio,ζ io( )/ 
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Figure 3. Dependence of the energy gain on the azimuth 
s. Red dots are the results of simulations; the blue lines 
are linear and second order polynomial fits. 

CONCEPT 
Horizontal betatron oscillations around the ideal 

trajectory are described by well-known homogeneous 
linear equation: 

 dX
ds

≡ ′ X = D s( )⋅ X(s);   D =
0 1

−K1(s) 0
 

 
 

 

 
 ;          (3) 

where XT = x, px[ ] and K1(s) is defined by focusing 
strength of magnets and the space charge of the beam. 
The solution of equation (3) can be expressed in matrix 
form: 

)0()()( XsMsX ⋅=  
where X(0) is initial transverse phase space coordinates. 
The M(s) is the 2x2 transport matrix from 0 to s which is 
satisfied conditions: 

MsDM ⋅=′ )( ; 1det =M . 
For a particle with energy deviation δ(s) the equation of 

motion becomes inhomogeneous: 

′ Ψ (s) = D s( )⋅ Ψ(s) + Ko(s) ⋅ δ(s) ⋅
0
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 
 ,   (4) 

where Ko(s) = eBy
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and zero initial conditions Ψ(o) = 0 one gets: 

AT s( )= − Ko( ′ s ) ⋅ δ( ′ s )m12 ′ s ( )d ′ s 
0

s

∫ , Ko( ′ s ) ⋅ δ( ′ s )m11 ′ s ( )d ′ s 
0

s

∫  
 

 
 

 

 
      . 

Hence, for the decoupling of transverse and 
longitudinal motions (it is actually the condition on 4x4 

symplectic matrix [5]) at the end of the system, sf, one 
should request that for each electron two conditions are 
satisfied: 

A(sf ) = 0.   (5) 
Using parameterization (2), one can rewrite (5) in the 

form of four conditions: 
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which provide sufficient for the decoupling of transverse 
and longitudinal motion for all electrons within the bunch.  

System with bilateral symmetry (Zigzag)  
The simplest case of parameterization in eq. (2) is that 

of a “frozen” longitudinal motion: 
′ δ = g ζ o( )⇒ δi(s) = δio + s ⋅ g ζ io( ), 

which is a good approximation for variety of the 
processes relevant to the space charge effects (see Fig. 3, 
where linear approximation fits g2(s) rather well, or see 
Refs. [6,7] where similar considerations were applied for 
coherent synchrotron radiation effects); 

The decoupling conditions in this case are: 

Ko( ′ s ) ⋅ m11 ′ s ( )d ′ s 
0

S

∫ = 0;        Ko( ′ s ) ⋅ s ⋅ m11 ′ s ( )d ′ s 
0

S

∫ = 0;

Ko( ′ s ) ⋅ m12 ′ s ( )d ′ s 
0

S

∫ = 0;       Ko( ′ s ) ⋅ s ⋅ m12 ′ s ( )d ′ s 
0

S

∫ = 0;

 (7) 

Let’s consider a system, which we call Zigzag, with 
symmetrical focusing K1(s) = +K1(s)  and asymmetrical 
curvature )()( sKsK oo −=  (see Fig. 4). 

S
=
0

 
Figure 4. Schematic of a Zigzag: green boxes are the 
dipoles, red and blue boxes are focusing and defocusing 
lenses. 

The elements of the transport matrix for such systems are 
coupled by the conditions for the bilateral symmetry: 
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Hence for Zigzag system two achromatic conditions from 
(7) are automatically satisfied: 
Ko(−s) ⋅ m11 −s( )=  − Ko(s) ⋅ m11 s( ) ⇒ Ko( ′ s ) ⋅ m11 ′ s ( )d ′ s 

−L

L

∫ ≡ 0

Ko(−s) ⋅ −s( )⋅ m12 −s( )= −Ko(s) ⋅ s( )⋅ m12 s( ) ⇒ Ko( ′ s ) ⋅ m12 ′ s ( ) ′ s ⋅ d ′ s 
−L

L

∫ ≡ 0

The rest of achromatic conditions (7) can be rewritten as: 

Ko( ′ s ) ⋅ m12 ′ s ( )d ′ s 
0

L

∫ = 0;           Ko( ′ s ) ⋅ s ⋅ m11 ′ s ( )d ′ s 
0

L

∫ = 0. (8) 

Example: A simplest system consists of 2K short dipoles 
(with bending angle kθ  and position ks  each) without 
focusing in horizontal direction. In this case the elements 

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

2513 0-7803-8859-3/05/$20.00 c©2005 IEEE



of transport matrix are: m11 =1,  m12 = s and only one 
condition remains: 

sk ⋅ θk
k=1

K

∑ = 0    (9). 

For K=2 the condition (9) gives a simplest Zigzag with 

12 2ss = , 21 2   θθ −= [8]. 

RESULTS OF THE TESTS 
Detailed results of the test of the concept can be found 

in [5,8]. Here we present only main results by comparing 
a traditional achromat (chicane) with a Z-system (see Fig. 
4). To make a fair comparison, both systems have the 
same focusing strength and are made of chevron with 86 
cm radii or curvature. Both configurations are achromatic 
for particle with constant energy. This resulted in 
following parameters: 

ZigZag lattice: 10º bend, 40 cm drift, -20º bend, 81.6 
cm, 20º bend, 40 cm drift, 10º bend 

Chicane lattice: 12.4º bend, 47.5 cm drift, -11.36º bend, 
96.6 cm, 11.36º bend, 47.5 cm drift, -12.4º bend 
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Figure 4. Schematics of  traditional chicane and a Zigzag-
system for an ERL. 

In the numerical test performed with PARMELA, a 1 
nC electron bunch from the 1.5-cell RF gun was 
propagated through the above merging systems followed 
by a 15 MeV 703.75 MHz linac. The electron beam 
energy at the gun exit was γmc2=4.2MeV. Initial beam 
has “beer-can distribution”: duration of 12º (47 psec) and 
radius 4 mm.  

 

 
Figure 5: Results of PARMELA simulation for 1nC. 

 

Results of the PARMELA simulation are shown in Fig. 
5. In both cases, for the chicane and the Z-system, vertical 
normalized emittances are equal to about 1.8 mm*mrad at 
the linac exit, the indication of the equivalence of the 
systems for the process of emittance compensation. In 
contrast, the horizontal emittance behavior is very 
different for two systems. After passing the Z-system 
horizontal emittance and vertical emittance have 
practically the same value, while the chicane results in a 
doubling of the horizontal emittance. 

CONCLUSIONS 
We developed the new concept to the ERL merging 

system compatible with the emittance compensation 
schemes for generating high brightness electron beam. To 
our surprise this simple concept, some version of which 
were intuitively used previously [6,7], works very well 
for many processes, including space charge dominated 
magnetized beams [10] and coherent synchrotron 
radiation [6].  
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