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Abstract

One of the main limitations for precise tune measure-
ments using kicked turn-by-turn data is the beam deco-
herence, which can limit the available signal to a reduced
number of turns. Applying Laskar’s frequency analysis, on
measurements from several beam position monitors, a fast
and accurate determination of the real tune is possible. The
efficiency of the method is demonstrated when applied in
turn-by-turn data from the ESRF storage ring and CERN’s
Super Proton Synchrotron. Estimates from tracking simu-
lations and analytical considerations are further compared
with the experimental results.

INTRODUCTION

The frequency map analysis method [1] is a well–
established technique of nonlinear dynamics that has al-
ready been successfully applied to theoretical [2] and ex-
perimental [3, 4] beam dynamics studies. The method per-
mits the fast and accurate determination of the fundamental
frequencies (tunes) of single particles (or beam centroids)
by the numerical treatment of tracking data (or position
measurements) around the ring. In the case of beam posi-
tion measurements and in the presence of tune dependence
with the amplitude or the momentum (chromaticity), the
decoherence [5] of the beam diminish drastically the num-
ber of turns for the tune determination, with data above the
noise level. A way to overcome this problem is to use mea-
surements from multiple beam position monitors (BPMs),
which are placed around the ring. In principle, this ap-
proach will allow the precise determination of tunes after
only a small number of turns, before the beam decoheres.
A preliminary study following this approach has already
been done for the European Synchrotron Radiation Facility
(ESRF) storage ring [4].

In the present paper, we study in detail the problem of
tune determination by analyzing measurements from mul-
tiple BPMs, both theoretically and experimentally. First,
using a theoretical “ideal” model of the ESRF storage ring,
we study the convergence to the real tune values of the
tunes computed from data acquired from multiple BPMs,
in the absence of decoherence. Then, we turn our attention
to real experimental data from multiple BPMs and study
the effect of decoherence on the tune determination.
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THEORETICAL TREATMENT

As a toy model, we consider an ideal, symmetric lattice
for the ESRF storage ring. The ideal ESRF lattice has a
16–fold periodicity and in every super-period 14 BPMs are
placed. In the simulations, a symplectic integrator [6] is
used for the tracking, while the numerical analysis of the
data and the tune determination is performed by the TRIP
package [7].

Figure 1: Frequency map for an ideal lattice of the ESRF.
The initial conditions are taken over a mesh in the horizon-
tal (x) and the vertical (y) direction (bottom), and the cor-
responding frequencies are plotted in the frequency space
(top). Each point is colored according to the color code
associated to the values of the diffusion index D.

The frequency map of the system (Fig. 1) is constructed
by the analysis of data acquired from only one BPM which
is located in the middle of a straight section of the accelera-
tor. As a stability index we use the tune variation with time.
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In particular, we compute the horizontal νx and the vertical
νy tunes over two successive time spans of 600 turns and
define the diffusion index D as the logarithm of the root
mean square of the tune differences. This diffusion rate is
colored by a color scale from blue for regular orbits to red
for chaotic ones.
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Figure 2: Beta functions from the ideal ESRF model (left)
and as measured in the real storage ring (right).
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Figure 3: The distance di between fictitious (equally
spaced) and real BPMs around the ESRF ring, as a func-
tion of the BPM index i. The line di = 0 is also plotted.

Since the ESRF ring has a 16–fold periodicity, there ex-
ist 14 families each one containing 16 symmetric BPMs,
with respect to the ring optics. The azimuthal distance be-
tween successive BPMs of the same family is constant and
equal to the length of the superperiod. The 224 BPMs ex-
isting around the ring are neither equally spaced and their
optics differ, as plotted in Fig. 2a. In Fig. 3 we plot the
distance di between the positions of 224 fictitious, equally
spaced, BPMs around the ring and the real BPMs, with re-
spect to the index i of each BPM. The i = 14 periodicity
resulting from the 16–fold periodicity of the ring is evi-
dent. Obviously, higher order periodicities are also present
e.g. i = 28 = 2 × 14. Additionally, the distance between
every 7th BPM is constant, due to the fact that each super-
period of the ring has an additional internal mirror symme-
try, although these BPMs do not have the same optics (see
Fig. 2a).

For demonstrating how data acquired from multiple
BPMs are used to accurately determine the real tunes in
less turns, we consider an on–momentum beam in the sta-
ble region of Fig. 1, near the ideal closed orbit with initial
conditions x = y = 1mm. The real tunes νx, νy of the
orbit are computed by the frequency analysis of measure-
ments from only one BPM for 104 turns. In Fig. 4, we
present the convergence rates to the real tunes of the ones
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Figure 4: Convergence of the (a) horizontal νx and (b) ver-
tical νy frequencies to the tune values extracted by a stan-
dard turn by turn analysis as a function of the number of
turns n. The following schemes were used: data from only
one BPM per turn (red curves), averaging of tunes com-
puted from: 1) 28 families of 8 symmetric BPMs (green
curves), 2) 14 families of 16 symmetric BPMs (deep blue
curves), 3) 7 families of 32 equally spaced BPMs (magenta
curves) and data from all 224 BPMs (light blue curves).

computed by the analysis of measurements from multiple
BPMs, as a function of the number n of turns. From the
results of this figure we see that tunes computed by the tra-
ditional technique of analyzing the measurements of just
one BPM per turn (red curves) converge slowly to the real
tunes, while considering more measurements per turn, re-
sults to faster convergence rates. From the comparison of
results retrieved from measurements of symmetric BPMs
(green and dark blue curves), it is shown that increasing
the number of data points per turn, results to a more accu-
rate tune determination. We also point out that analyzing
data from equally spaced BPMs not having the same optics
(magenta curves), or even from many BPMs that are not
even equally spaced (light blue curves), a fast and accurate
tune determination is obtained mainly because, the number
of measurements per turn is considerably increased.

In the case of measurements obtained by not equally
spaced BPMs, although the data are analyzed as if they
were acquired from symmetric BPMs, the real trajectory
is a function f(s) of distance s and the data are consid-
ered to be measured at equally spaced positions s i, with i
being the BPM’s index. Practically this means that a fre-
quency analysis of the function f1(si) = f(si − di) is
performed, whose Taylor expansion gives f(s i − di) ≈
f(si) − f ′(si)di + (1/2)f ′′(si)d2

i + . . .. Since the deriva-
tives of f(si) have the same fundamental frequency ν with
f(si), the frequency spectrum of f1 contains ν, as well as
combinations of ν with the frequency of d i (Fig. 3) which
is equal to 1 (or a multiple of 1), since the period of d i is
the total length of the ring which is considered as unity.
Since the frequency analysis algorithm computes the frac-
tional part of the real frequency, the addition of multiples
of 1 does not, in general, alter the computed tunes.

EXPERIMENTAL DATA

The same analysis presented in the previous section was
conducted in experimental data from the ESRF storage
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ring. The BPM system is based on multiplexed signal ca-
pable of giving a “pseudo” turn by turn data after averaging
but with a high precision of a few μm in the position mea-
surement [4]. Among the 224 existing BPM, 10 are used
for other purposes and are not available. In Fig. 5, we dis-
play the difference of the horizontal and vertical tunes as
computed by frequency analyzing all 214 BPMs with the
values estimated by the standard turn-by-turn tune mea-
surement. The various curves correspond to kicks of in-
creasing horizontal amplitude (from 1 to 10mm) and a con-
stant vertical one. The convergence to the correct tune is
quite rapid and within the first 20 to 30 turns the tune differ-
ence is below 10−4, which is remarkably good considering
the experimental nature of the data. Note that the analysis
of symmetrically positioned BPMs gives similar results, al-
though the super-periodicity of the lattice and thus the op-
tics functions is perturbed by linear imperfections. This is
shown in Fig. 2b, where measured horizontal (red) and ver-
tical (blue) beta functions are presented as estimated by a
response matrix analysis. The experimental data (circles)
are superimposed with the theoretical curves of the perfect
model and displayed along one super-period for the sake
of comparison. In this case, apart from the modulation in
the azimuthal position, an amplitude modulation is added
which indeed is 1-periodic and thus has the same effect, i.e.
adds up in the spectrum frequencies which are multiples of
1.
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Figure 5: Convergence of the (top) horizontal νx and (bot-
tom) vertical νy frequencies, after analysis of all 214 avail-
able ESRF BPMs, to the real tune values as a function of
the number of turns n. The different curves correspond to
different horizontal kicks and the same vertical one.

In the case of the CERN Super Proton Synchrotron
(SPS), turn-by-turn positions have been measured at

26GeV using the LHC type bunches and the 1000-turn
measurement system [8]. In Fig. 6, we present the con-
vergence of the vertical tune to the real one, after analyzing
the data from around 80 of the total 114 BPMs available
around the ring. The different curves correspond to 4 verti-
cal kicks applied with the tune meter kicker, ranging from
2 to 8mm and no horizontal one. The signal from around
30% of the BPMs were not taken into account, as it was
found to suffer from noise due to timing problems, making
the analysis even more challenging. In the case of the SPS
data, the beam decoherence is much slower but the BPM
resolution is not as good as in the case of the ESRF storage
ring, corresponding to a few tens of microns. On the other
hand, it is still remarkable that for all the different kicks,
the real frequency is recovered with a precision of around
10−4, within the first 50 turns.
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Figure 6: Convergence of the vertical νy frequencies, after
analysis of around 80 of the available BPMs of the SPS, to
the real tune values as a function of the number of turns n.
The different curves correspond to different vertical kicks.
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